

http://www.vision.jhu.edu

Noisy Dual Principal Component Pursuit

Tianyu Ding¹, Zhihui Zhu¹, Tianjiao Ding², Yunchen Yang², René Vidal¹, Manolis Tsakiris², Daniel Robinson¹ ²ShanghaiTech University ¹Johns Hopkins University

ICML 2019

Thirty-sixth International Conference on Machine Learning

Motivation

- Problem: Fit a subspace to data contaminated with noise and outliers
- Prior work: Sparse & low-rank methods on low dimensional subspace
- Challenges: Many applications require subspace to be of high relative dimension; not obvious to establish guarantees in presence of noise

Dual Principal Component Pursuit (DPCP)

in Noisy Setting

Estimating the geometry of a room from its depth map by fitting multiple planes

• Inliers $\boldsymbol{\mathcal{X}}$ span a d-dimensional subspace $\boldsymbol{\mathcal{S}}$

Estimating the road plane from points collected by a laser scanner

inliers $oldsymbol{\mathcal{X}}^{'} \in \mathbb{R}^{D imes N}$

 $\operatorname{dist}(\boldsymbol{b}^{\star},\,\mathcal{S}^{\perp}) \propto \operatorname{noise level}$

 $\operatorname{dist}(\boldsymbol{b}_k, \, \mathcal{S}^{\perp}) = O(\beta^k) + \operatorname{const},$

 $\beta < 1$, const \propto noise level

Deterministic Global Optimality Analysis

- Assume the data is given and fixed
- When $\mathcal{E} \neq \mathbf{0}$, \mathbf{b}^* will be perturbed away from \mathcal{S}^{\perp} by an angle θ
- $\operatorname{dist}(\boldsymbol{b}^{\star}, \mathcal{S}^{\perp})$ depends on noise level

Lemma: Any critical point of (1) must have its principal angle θ satisfy: $\theta \leq \theta^{\diamond}$ or $\theta \geq \theta^{\natural}$,

where $0 \le \theta^{\diamond} \le \theta^{\natural} \le \pi/2$ are closely realted to the two nonnegative roots of a certain quartic equation.

Remark: Any critical point is either close to \mathcal{S}^{\perp} or close to \mathcal{S}

Theorem: Any global solution b^* to (1) must be close to S^{\perp} such that $\theta \in [0, \theta^{\diamond}]$ as long as the outlier ratio and the noise level is small.

Remark: Any global solution b^* is close to S^{\perp} such that $\theta \leq \theta^{\diamond}$

 $\bullet \theta^{\diamond} \propto$ the effective noise level

• $\mathcal{O} = \mathbf{0} \implies \theta^{\natural} = \pi/2$

solution \boldsymbol{b}^{\star} is a normal vector of $\boldsymbol{\mathcal{S}}$

computes solution \boldsymbol{b}^{\star} (ideally $\boldsymbol{b}^{\star} \perp \mathcal{S}$) by

• Outliers \mathcal{O} lie in ambient space \mathbb{R}^D

ullet Ambient noise $oldsymbol{\mathcal{E}}$ are additive on inliers

• Given dataset $\widetilde{\mathcal{X}} = [\mathcal{X} + \mathcal{E} \mathcal{O}]$, DPCP

DPCP to the case of data corrupted by noise

Geometric

Deterministic Analysis

Geometric

Probabilistic Analysis

Projected SubGradient

Method (PSGM)

- (1)
- Noisy DPCP assumes $\mathcal{E} \neq \mathbf{0}$, which is opposite with the regular noiseless DPCP that based on $\mathcal{E} = \mathbf{0}$

Main Contributions

• When $\mathcal{E} = \mathbf{0}$ (noiseless), [Tsakiris & Vidal], [Zhu et al.] derived geomet-

ric conditions under which $b^{\star} \perp \mathcal{S}$ and proposed efficient algorithms

• This paper extends the global optimality and convergence theory of

Main Contributions

Probabilistic Analysis

- Columns of noisy inliers $\mathcal{X} + \mathcal{E}$ are drawn from \mathbb{S}^{D-1} by normalizing i.i.d. $\mathcal{N}(\mathbf{0}, \frac{1}{d}\mathbf{\Pi}_{\mathcal{S}} + \frac{\sigma^2}{D}\mathbf{I}_D)$ -distributed points to have unit ℓ_2 norm

Theorem: Any global solution to (1) must lie in a neighborhood of \mathcal{S}^{\perp} such that $\sin(\theta) \lesssim \sqrt{\sigma}/(1-\sqrt{\sigma})$ with probability exceeding $1-O(\frac{1}{N^2})$ if $M \leq C \cdot N^2$.

• Comparison with state-of-the-art: other methods can only handle at most M =O(N) outliers in theory [Lerman and Maunu

- Columns of outliers \mathcal{O} are drawn uniformly from the sphere \mathbb{S}^{D-1}
- Under this random model, the SNR is $\mathbb{E}[\|\boldsymbol{\mathcal{X}}\|_F]/\mathbb{E}[\|\boldsymbol{\mathcal{E}}\|_F] = 1/\sigma$

• C is a constant depends on σ , D and d

Theorem: If $\theta_0 < \theta^{\natural}$, $\tan(\theta_k)$ has a piecewise linear convergence rate: $\tan(\theta_k) \le \beta^{\lfloor (k-K_0)/K \rfloor} + \tan(\theta'), \ \forall k \ge K_0.$

Spectral initialization: set $\widehat{\boldsymbol{b}}_0 \leftarrow \arg\min_{\boldsymbol{b} \in \mathbb{S}^{D-1}} \| \widetilde{\boldsymbol{\mathcal{X}}}^{\top} \boldsymbol{b} \|_2$

PSGM update: $\boldsymbol{b}_{k+1} \leftarrow \widehat{\boldsymbol{b}}_k - \mu_k \boldsymbol{g}_k$; \boldsymbol{g}_k is the sub-gradient

Projected back to sphere: $\widehat{\boldsymbol{b}}_{k+1} \leftarrow \boldsymbol{b}_{k+1} / \|\boldsymbol{b}_{k+1}\|_2$

 $\bullet \theta'$ is a critical angle proportional to the effective noise level, which also depends on M, N, and the distribution of the data

Projected SubGradient Method (PSGM)

Piecewise geometrically diminishing stepsize: $\mu_k = \mu_0 \beta^{\lfloor (k-K_0)/K_0 \rfloor}$

Input: \mathcal{X} , $\{\mu_0, K_0, K\} > 0, \beta < 1$

	${\cal E}=0$	M/N fixed, larger M,N , smaller noise level more well-distributed data
θ'	0	↓
nal angle θ_1 de		

Experiments on 3D Point Cloud Road Data

Task: Given a 3D point cloud of a road scene, the goal is to learn an affine plane as a model for the road

- Determine points that lie on the plane (inliers) / off the plane (outliers)
- Frame 328 of dataset KITTI-CITY-71, with inliers (blue) / outliers (red)

Contains around 10^5 points with approximately 50% outliers

Supported by NSF grant 1704458.

Theory

Algorithm