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Introduction

e Non-convex optimization has become ubiquitous in machine learning

e New tools are needed to analyze the optimization landscape and develop efficient

algorithms with guarantees of convergence to global minima. Recent advances:
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Basin of attraction
Global geometric analysis Local geometric analysis

(smoothness (Hessian) is often required) (could be non-smooth)

e We focus on local analysis of non-smooth problems on the Grassmannian

Main Contribution
o Problem: minimize f(B) over B € O(¢, D) = {B € R"**: B'B =1,}

— f: RP*¢ & R is locally Lipschitz, possibly non-convex and non-smooth

= f(BQ) for any Q € O(c, ¢

Contribution 1: Riemannian subgradient method (RSGM) converges locally
at an R-linear rate if f satisfies a Riemannian regularity condition (RRC)
Contribution 2: Orthogonal Dictionary Learning (ODL) and Dual Principal
Component Pursuit (DPCP) satisfy the RRC, which improves existing results

— f is rotation invariant, i.e., f(B)

DL [1]: a sublinear convergence rate for RSGM

PCP [2]: a piecewise linear convergence rate for the sphere case, i.e., ¢ =1

Principal Angles & Distance

oVA, B € O(c, D), the principal angles between Span(A)
and Span(B) are defined as 6;(A, B) = arccos(o;(A' B)),

where o; 1s the ¢-th singular value
e The distance between A, B is defined as

= 250 (1 - cos(6(A. B))) = min [ B~ AQ||r

{AQ : Q € O(c,c)} is

where Q* = arg min ||B — AQ||r
QcO(c,c)

dist(A, B)

e The projection of B onto equivalence class [A| =

Pa(B) = AQ",
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Riemannian Regularity Condition (RRC)

e Definition: f satisfies the (a, e, B*)-RRC if for every
B € O(c, D) satistying dist(B, B*) < ¢, there exists a
Riemannian subgradient G(B) € Orf(B) such that

(1) (Pp(B) — B,-¢(B)) >

a dist(B, B”)

o Closely related to sharpness and weak convexity for unconstrained problems [3]

Riemannian Subgradient Method (RSGM)

e Obtain a Riemannian subgradient G(B},) that satisfies (1) with B = By,

e Compute a step size u; according to a certain rule

e Update the iterate Ek_|_1 — B — 1;:G(Br) and B, < orthonormalize(ﬁkﬂ)

Convergence Analysis of RSGM

e Assumptions:
— f satisfies the (a, €, B*)-RRC; initialization B\ satisfies dist(B, B*) < €
—bounded Riemannian subgradient ||G(B)||r < &, VB s.t.dist(B, B") <

e Proposition (constant step size): Let u, = p < ae/€%. Then

dist(B}, B*) < max { dist( By, B*) — pak/2, ,u§2/oz}

—Due to non-smoothness, there exists an upper bound p&? /o for all iterates
—Tradeoff: larger p leads to faster decrease, but larger upper bound p&?/ o

e Theorem: Let uy = 193", where
— 1y < adlst(Bo, B*)/2¢&° !
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Then B, converges to B™ at an R-linear rate:

plot of B(uo)

dist(B},, B*) < dist(B,, B*)5", V k > 0.

0 Lo adist(By, B*) /2¢2

o The larger (smaller) p, the smaller (larger) 5(uo)

Minimization on Stiefel Manifold

e Our results can be extended to functions that are not rotation invariant by moditying

the definition of distance and iterate update: Bj.y1 = Po( p)(Br+1)-
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Application to DPCP

o F'it a subspace & of codimension P - RDXM
c =D — d to data X corrupted by 0
outliers O by solving

outhers
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min Z |B'z,, X=[Xx0O] ¢ o JXERDXN

BecO(c,D) O O- inliers

o Theorem. (2) DPCP satisfies the RRC, (iz) RSGM with a suitable init.

converges to an orthonormal basis of S+ at an R-linear rate, and (i¢7) SVD
gives a valid init. (when M < N“/dD in a random spherical model)
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Application to ODL

f of

Orthonormal dictionary Sparse

o Find one column b of B* by solving mingep(1 p) 16" X1
e ODL satisfies the RRC [1]
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mingeop |67 X | mingeop,p) ||B' X||;

o Find all columns of B* by solving mingeg(p.p) ||[B ' X1 (using RSGM on
the Stiefel manifold instead of Grassmannian)
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