

A Linearly Convergent Method for Non-Smooth Non-Convex Optimization on the Grassmannian with Applications to Robust Subspace and Dictionary Learning

Zhihui Zhu¹, Tianyu Ding¹, ¹Johns Hopkins University

Manolis Tsakiris², Daniel Robinson³, René Vidal¹ ²ShanghaiTech University

³Lehigh University

Introduction

- Non-convex optimization has become ubiquitous in machine learning
- New tools are needed to analyze the optimization landscape and develop efficient algorithms with guarantees of convergence to global minima. Recent advances:

Global geometric analysis

(smoothness (Hessian) is often required) (could be non-smooth) • We focus on local analysis of non-smooth problems on the Grassmannian

Main Contribution

- Problem: minimize $f(\boldsymbol{B})$ over $\boldsymbol{B} \in \mathbb{O}(c,D) \equiv \{\boldsymbol{B} \in \mathbb{R}^{D \times c} : \boldsymbol{B}^{\top} \boldsymbol{B} = \mathbf{I}_c\}$
- $-f: \mathbb{R}^{D \times c} \to \mathbb{R}$ is locally Lipschitz, possibly non-convex and non-smooth -f is rotation invariant, i.e., $f(\mathbf{B}) = f(\mathbf{B}\mathbf{Q})$ for any $\mathbf{Q} \in \mathbb{O}(c,c)$

Contribution 1: Riemannian subgradient method (RSGM) converges locally at an R-linear rate if f satisfies a Riemannian regularity condition (RRC) Contribution 2: Orthogonal Dictionary Learning (ODL) and Dual Principal Component Pursuit (DPCP) satisfy the RRC, which improves existing results -ODL [1]: a sublinear convergence rate for RSGM

Principal Angles & Distance

-DPCP [2]: a piecewise linear convergence rate for the sphere case, i.e., c=1

- $\bullet \forall A, B \in \mathbb{O}(c, D)$, the principal angles between $\mathrm{Span}(A)$ and Span(\boldsymbol{B}) are defined as $\theta_i(\boldsymbol{A}, \boldsymbol{B}) = \arccos(\sigma_i(\boldsymbol{A}^{\top}\boldsymbol{B}))$, where σ_i is the *i*-th singular value
- ullet The distance between $oldsymbol{A}, oldsymbol{B}$ is defined as $\operatorname{dist}(\boldsymbol{A}, \boldsymbol{B}) := \sqrt{2 \sum_{i=1}^{c} \left(1 - \cos(\theta_i(\boldsymbol{A}, \boldsymbol{B})) \right)} = \min_{\boldsymbol{Q} \in \mathbb{O}(c, c)} \|\boldsymbol{B} - \boldsymbol{A}\boldsymbol{Q}\|_F \boldsymbol{\Psi}$
- The projection of \boldsymbol{B} onto equivalence class $[\boldsymbol{A}] = \{\boldsymbol{A}\boldsymbol{Q}: \boldsymbol{Q} \in \mathbb{O}(c,c)\}$ is $\mathcal{P}_{\boldsymbol{A}}(\boldsymbol{B}) = \boldsymbol{A}\boldsymbol{Q}^{\star}, \text{ where } \boldsymbol{Q}^{\star} = \arg\min \|\boldsymbol{B} - \boldsymbol{A}\boldsymbol{Q}\|_{F}$

Riemannian Regularity Condition (RRC)

• **Definition**: f satisfies the $(\alpha, \epsilon, \mathbf{B}^*)$ -RRC if for every $\boldsymbol{B} \in \mathbb{O}(c,D)$ satisfying dist $(\boldsymbol{B},\boldsymbol{B}^{\star}) \leq \epsilon$, there exists a Riemannian subgradient $\mathcal{G}(\boldsymbol{B}) \in \partial_R f(\boldsymbol{B})$ such that

• Closely related to sharpness and weak convexity for unconstrained problems [3]

Riemannian Subgradient Method (RSGM)

- Obtain a Riemannian subgradient $\mathcal{G}(\boldsymbol{B}_k)$ that satisfies (1) with $\boldsymbol{B} = \boldsymbol{B}_k$
- Compute a step size μ_k according to a certain rule
- Update the iterate $\hat{\boldsymbol{B}}_{k+1} \leftarrow \boldsymbol{B}_k \mu_k \boldsymbol{\mathcal{G}}(\boldsymbol{B}_k)$ and $\boldsymbol{B}_{k+1} \leftarrow \text{orthonormalize}(\hat{\boldsymbol{B}}_{k+1})$

Convergence Analysis of RSGM

- Assumptions:
- -f satisfies the $(\alpha, \epsilon, \mathbf{B}^*)$ -RRC; initialization \mathbf{B}_0 satisfies $\operatorname{dist}(\mathbf{B}_0, \mathbf{B}^*) \leq \epsilon$
- -bounded Riemannian subgradient $\|\mathcal{G}(\boldsymbol{B})\|_F \leq \xi$, $\forall \boldsymbol{B}$ s.t. $\operatorname{dist}(\boldsymbol{B}, \boldsymbol{B}^*) \leq \epsilon$
- Proposition (constant step size): Let $\mu_k \equiv \mu \leq \alpha \epsilon/\xi^2$. Then

$$\operatorname{dist}(\boldsymbol{B}_{k},\boldsymbol{B}^{\star}) \leq \max \left\{ \operatorname{dist}(\boldsymbol{B}_{0},\boldsymbol{B}^{\star}) - \mu \alpha k/2, \ \mu \xi^{2}/\alpha \right\}$$

- -Due to non-smoothness, there exists an upper bound $\mu \xi^2/\alpha$ for all iterates -Tradeoff: larger μ leads to faster decrease, but larger upper bound $\mu \xi^2/\alpha$
- **Theorem**: Let $\mu_k = \mu_0 \beta^k$, where

 $-\mu_0 \le \alpha \operatorname{dist}(\boldsymbol{B}_0, \boldsymbol{B}^*)/2\xi^2$

 $-1 > \beta \ge \underline{\beta}(\mu_0) := \sqrt{1 - 2\frac{\alpha\mu_0}{\operatorname{dist}(\boldsymbol{B}_0, \boldsymbol{B}^*)} + \frac{\mu_0^2 \xi^2}{\operatorname{dist}^2(\boldsymbol{B}_0, \boldsymbol{B}^*)}}$

Then \boldsymbol{B}_k converges to \boldsymbol{B}^* at an R-linear rate:

 $\operatorname{dist}(\boldsymbol{B}_k, \boldsymbol{B}^*) \leq \operatorname{dist}(\boldsymbol{B}_0, \boldsymbol{B}^*) \beta^k, \ \forall \ k \geq 0.$

• The larger (smaller) μ_0 , the smaller (larger) $\beta(\mu_0)$

plot of $\beta(\mu_0)$ $\alpha \mathrm{dist}(B_0,B^\star)/2\xi^2$

Application to DPCP

ullet Fit a subspace ${\mathcal S}$ of codimension c = D - d to data \mathcal{X} corrupted by outliers \mathcal{O} by solving

• Theorem: (i) DPCP satisfies the RRC, (ii) RSGM with a suitable init. converges to an orthonormal basis of \mathcal{S}^{\perp} at an R-linear rate, and (iii) SVD gives a valid init. (when $M \lesssim N^2/dD$ in a random spherical model)

- Find one column \boldsymbol{b}^{\star} of \boldsymbol{B}^{\star} by solving $\min_{\boldsymbol{b} \in \mathbb{O}(1,D)} \|\boldsymbol{b}^{\top} \boldsymbol{X}\|_1$
- ODL satisfies the RRC [1]

• Find all columns of \boldsymbol{B}^{\star} by solving $\min_{\boldsymbol{B} \in \mathbb{O}(D,D)} \|\boldsymbol{B}^{\top} \boldsymbol{X}\|_1$ (using RSGM on the Stiefel manifold instead of Grassmannian)

[1] Bai, Jiang & Sun, Subgradient Descent Learns Orthogonal Dictionaries, In *ICLR*, 2019.

[2] Zhu et al., Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms, In NeurIPS, 2019.

[3] Davis et al., Subgradient Methods for Sharp Weakly Convex Functions, In J. Optim. Theory, 2018.

[4] Tsakiris & Vidal, Dual principal component pursuit, In *JMLR*, 2018

[5] Maunu, Zhang & Lerman, A well-tempered landscape for non-convex robust subspace recovery, In JMLR, 2019

Minimization on Stiefel Manifold

• Our results can be extended to functions that are not rotation invariant by modifying the definition of distance and iterate update: $\boldsymbol{B}_{k+1} = \mathcal{P}_{\mathbb{O}(c,D)}(\boldsymbol{B}_{k+1})$.