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Abstract
Dual Principal Component Pursuit (DPCP) is a
recently proposed non-convex optimization based
method for learning subspaces of high relative
dimension from noiseless datasets contaminated
by as many outliers as the square of the number
of inliers. Experimentally, DPCP has proved to
be robust to noise and outperform the popular
RANSAC on 3D vision tasks such as road plane
detection and relative pose estimation from three
views. This paper extends the global optimality
and convergence theory of DPCP to the case of
data corrupted by noise, and further demonstrates
its robustness using synthetic and real data.

1. Introduction
Dual Principal Component Pursuit (DPCP) is a recently pro-
posed method for learning a linear subspace S ⊂ RD from
a dataset X̃ ∈ RD×L contaminated by outliers (Tsakiris &
Vidal, 2015; 2017; 2018a; Zhu et al., 2018a;b). Specifically,
DPCP minimizes an `1 co-sparse objective on the sphere:

min
b

∥∥X̃>b∥∥
1

s.t.
∥∥b∥∥

2
= 1. (1)

The aim is to estimate a basis for the orthogonal comple-
ment of the subspace, hence the attribute dual. As such,
DPCP is ideally suited for subspaces of high relative di-
mension, i.e., those subspaces with dimension d such that
d/D is close to one. A typical example is the case of hy-
perplanes (d = D − 1), which very commonly appear in
3D computer vision applications such as detecting planar
structures in 3D point clouds (Geiger et al., 2013; Silberman
et al., 2012) or estimating relative poses in multiple-view
geometry (Hartley & Zisserman, 2000).
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In the high relative dimension regime, state-of-the-art con-
vex optimization based methods relying on sparse and low-
rank representations (Xu et al., 2010; Soltanolkotabi &
Candès, 2012; Rahmani & Atia, 2017; You et al., 2017)
typically exhibit a significant decrease in performance. On
the other hand, since its inception almost 40 years ago, the
Random Sampling And Consensus (RANSAC) (Fischler &
Bolles, 1981) algorithm has been one of the most popular
methods in computer vision for the high relative dimension
setting. RANSAC alternates between fitting a subspace to
a randomly sampled minimal number of points (D − 1 in
the case of a hyperplane) and then using the number of data-
points close to the subspace as a measure of the quality of
the subspace. The interplay between four factors governs
when RANSAC is successful: the ambient dimension, the
outlier ratio, the thresholding parameter for determining
when points are considered close to a subspace, and the allo-
cated time budget. In particular, RANSAC can be extremely
effective when the probability of sampling outlier-free sam-
ples inside the allocated time budget is large.

Recently (Tsakiris & Vidal, 2018a), it has been shown that
an Iteratively-Reweighted-Least-Squares algorithm (DPCP-
IRLS) for solving the non-convex DPCP problem (1) can
successfully handle 30%–50% outliers in the three-view ge-
ometry problem, while state-of-the-art RANSAC variations
fail when given the running time of DPCP-IRLS as a time
budget. Even more recently (Zhu et al., 2018a), it has been
demonstrated that a certain projected subgradient method
(DPCP-PSGM) solves (1) to global optimality using only
matrix-vector multiplications, and correctly performs road
plane detection from a 3D cloud of approximately O(105)
points with 50% outliers in just a few hundred millisec-
onds, a time window in which RANSAC can only perform
a few iterations and thus fails. These results highlight the
significance of DPCP as a potential alternative to RANSAC.

In the terminology of the review paper of Lerman & Maunu
2018, DPCP is in effect a least absolute deviations subspace
learning method. Such methods compute the subspace by
aiming to minimize the sum of the distances between all
points in the dataset and the subspace; this is precisely the
formulation (1) when the subspace is a hyperplane. For
example, REAPER (Lerman et al., 2015) applies a convex
relaxation that is solved via an IRLS scheme (Zhang & Ler-
man, 2014; Zhang, 2016). Although REAPER is known
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to perform competitively, the regime in which theoretical
guarantees are ensured excludes the high relative dimen-
sional setting, which we conjecture is a consequence of
using a convex relaxation. The work closest to DPCP is that
of Maunu et al. 2019, which studies a Geodesic Gradient
Descent (GGD) method for solving the least absolute devi-
ations problem without any relaxation. GGD is shown to
converge to the global optimum at a sublinear rate, and to be
able to handle M = O(N) outliers with N inliers; the latter
property is common to many robust PCA methods (Lerman
& Maunu, 2018). In contrast, Zhu et al. 2018a showed
that under a noiseless spherical statistical model, any global
minimizer to (1) is a normal vector to the subspace as long
as M = O(N2). Moreover, the DPCP-PSGM algorithm
mentioned above provably converges to the global optimum
of (1) in a piece-wise linear rate providing its step-size is
tuned in a piece-wise geometrically diminishing fashion.

Although the theoretical and algorithmic features of DPCP
are appealing, they have only been established for the ide-
alized case when inliers perfectly lie in the subspace. Yet,
DPCP has proved to be competitive on noisy real datasets,
so that it is reasonable to ask whether similar theoretical
guarantees hold when there is noise in the data. This work
bridges that gap by making the following contributions.

• We provide a geometric analysis of global optimality
for DPCP that reveals that global minimizers of (1) are
perturbed away from the orthogonal complement S⊥ of
the inlier subspace by an amount proportional to the noise
level, while still tolerating M = O(N2) outliers.

• We prove that the DPCP-PSGM method, even in the
presence of noise, converges to a neighborhood of S⊥ at
a piece-wise linear rate, if tuned properly.

• Connections are drawn to the literature of absolute least
deviations in subspace learning, where in particular we
establish the equivalence between DPCP-PSGM and the
GGD method of Maunu et al. 2019.

• An experiment on road plane detection with real 3D data
further strengthens the view that DPCP is superior to
RANSAC in the high relative dimension setting.

2. Global Optimality for Noisy DPCP
2.1. Background and motivation

Consider a unit `2-norm dataset X̃ E =
[
X + E O

]
Γ,

where X = [x1, · · · ,xN ] ∈ RD×N are inlier points span-
ning a single d-dimensional underlying subspace S of RD,
E = [ε1, · · · , εN ] ∈ RD×N consists of additive noise on in-
lier points, O = [o1, · · · ,oM ] ∈ RD×M are outlier points
and Γ is an unknown permutation. Our goal is to estimate
the underlying subspace S from X̃ E . When there is no
noise (i.e., E = 0) and the points are in general position,

the vectors b that make X̃
>
E b as sparse as possible are pre-

cisely those satisfying b ⊥ S; this is the motivation for (1).

Therefore, in the noisy case we expect X̃
>
E b to be close

to a sparse vector y in the Euclidean sense, whenever b is
close to a normal vector of S . This motivates the following
optimization problem (Tsakiris & Vidal, 2018a)1:

min
b∈SD−1,y∈RN+M

τ
∥∥y∥∥

1
+ 1

2

∥∥y − X̃
>
E b
∥∥2

2
, (2)

for some τ > 0, where SD−1 :=
{
b ∈ RD : ‖b‖2 = 1

}
.

As expected, the performance of (2) depends crucially on
the parameter τ . An alternative way is to directly adopt (1):

min
b∈SD−1

∥∥X̃>E b∥∥1
. (3)

We use synthetic experiments to compare (2) and (3), with
data generated according to the following random model:

Definition 1 (Random spherical model). Consider a ran-
dom spherical model where the columns of O are drawn
uniformly from the sphere SD−1, the columns of noisy in-
liers X +E are drawn from the sphere SD−1 by normalizing
i.i.d. N (0, 1

dPS + σ2

D ID)-distributed points to have unit
`2-norm, where d = dimS , PS is the ortho-projector onto
S, and σ is the standard deviation of the noise; under this
model the SNR is E[‖X‖F ]/E[‖E‖F ] = 1/σ.

Fig. 1 shows the numerical comparison between (2) and (3).
We solve (2) by alternating minimization, which empirically
converges fast even though it has no known convergence
theory. We use DPCP-PSGM (Algorithm 1), whose conver-
gence analysis will be discussed in Section 3, for solving
(3). Fig. 1a shows that even though τ is chosen to be opti-
mal, (2) and (3) perform competitively. Fig. 1b implies that
the formulation (3), which does not depend on any hyper-
parameter, is robust to noise, whereas the solution of (2) is
sensitive to τ . We have observed similar phenomena for
different D, d,M,N and σ. Based on this evidence, in this
paper we focus on (3).

Algorithm 1 DPCP-PSGM for (3)

1: Input: data X̃ E ∈ RD×(N+M) and initial step size µ0.

2: Initialization: Set b̂0 ← arg minb∈SD−1

∥∥X̃>E b∥∥2
.

3: for k = 1, 2, . . . do
4: Compute sub-gradient: gk−1 ← X̃ Esign(X̃

>
E b̂k−1).

5: Update the step size µk according to a certain rule.
6: Compute next iteration: bk ← b̂k−1 − µkgk−1.
7: Project bk onto the unit sphere: b̂k ← bk/‖bk‖2.
8: end for

1Problem (2) has also appeared in the context of dictionary
learning, see Qu et al. 2014.
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Figure 1. Comparison between computed solutions of (2) and (3)
in terms of their principal angle θ∗ from S⊥. Here, we fix D =
30, d = 29, N = 500, and outlier ratio M/(M +N) = 0.7.

2.2. Geometric quantities and their concentrations

We aim to provide a global optimality analysis for (3). Since
the objective in (3) is not continuously differentiable, we
need to deal with its subdifferential. Denote the sign func-
tion by sign(a) = a/|a| when a 6= 0, and sign(0) = 0, and
denote the subdifferential of the absolute value function |a|
by Sgn(a) = sign(a) when a 6= 0, and Sgn(0) = [−1, 1].
We also apply sign and Sgn element-wise to vectors.

To analyze (3), first note that any global solution b∗ to (3)

must be a critical point, i.e., there exists v∗ ∈ ∂‖X̃
>
E b
∗‖1

such that (I − b∗b∗>)v∗ = 0, where

∂‖X̃
>
E b‖1 = (X +E) Sgn((X +E)>b) +O Sgn(O>b). (4)

When noise is not present (i.e., E = 0), the term
Sgn

(
(X + E)>b

)
= Sgn(X>b) is simple since it only

relates to inliers. In the noisy case, however, it is much
more complicated to deal with this term. For example, since
the function sign is discontinuous, Sgn

(
(X + E)>b

)
can-

not easily be separated into two parts with one part only
involving the inliers and the other part only involving the
noise. As a consequence, a significantly more technical
analysis is required to analyze the effect of noise.

We now introduce several helpful geometric quantities. We
first characterize the maximum norm of a Riemannian sub-
gradient of 1

M ‖O
>b‖1:

ηO :=
1

M
max

b∈SD−1

∥∥(I − bb>)O sign(O>b)
∥∥

2
. (5)

As it turns out, ηO characterizes how well the outliers are
distributed in the ambient space: more uniformly distributed
outliers will lead to smaller value for ηO (Zhu et al., 2018a).
To facilitate an analysis, we decompose the noise as E =
Es + En, where Es is the projection of the noise onto S
and En is the projection of the noise onto S⊥. Denote
X̂ := X + Es and Ê := En such that the columns of X̂
lie in S and the columns of Ê lie in S⊥. X̂ can be viewed
as effective inliers since they lie in S, whereas Ê can be

interpreted as effective noise because it perturbs X̂ away
from S . Define the permeance statistic (Lerman et al., 2015)

cX̂ ,min :=
1

N
min

b∈S∩SD−1

∥∥X̂>b∥∥
1
, (6)

which attains larger values for better distributed inliers. We
capture the effective noise Ê via the quantity

cÊ,max :=
1

N
max

b∈S⊥∩SD−1

∥∥Ê>b∥∥
1
. (7)

This is closely related to the total inlier residual R(S) :=
1
N

∑N
j=1 ‖ε̂j‖2 used by Lerman et al. 2015 to measure the

level of the effective noise. By the Cauchy-Schwartz in-
equality |ε̂>j b| ≤ ‖ε̂j‖2‖b‖2, it is clear that cÊ,max is a
lower bound of R(S) since ‖b‖2 = 1. Indeed, R(S) only
depends on the energy of Ê , whereas cÊ,max also depends

on the distribution of Ê : the more uniformly distributed Ê is
in S⊥, the smaller cÊ,max is. Thus, cÊ,max leads to a tighter
result in our analysis than if one used R(S).

Note that cX̂ ,min involves a mixture of inliers and compo-
nents of noise projected onto S. This particular integration
of inliers and noise leads to tighter deterministic bounds in
the deterministic phase of our analysis. In turn, this will
be advantageous in the subsequent probabilistic analysis
(Lerman et al., 2015; Tsakiris & Vidal, 2018b).

We recall the probabilistic result for ηO from Zhu et al.
2018a;b and provide new bounds for cX̂ ,min, cÊ,max. Define
δ : [0, 1)→ R and ρ : [0, 1)→ R as

δ(σ) :=
√
σ +

√
(1− σ)Fd,D−d(σ), (8)

ρ(σ) := (1− σ)FD−d,d(1/σ), (9)

where Fd1,d2(·) is the cumulative density function (CDF) of
the F-distribution with Fd1,d2(0) = 0 and Fd1,d2(∞) = 1.
Expanding the CDFs, we have δ(σ) = O(σd/4 +

√
σ) and

ρ(σ) = 1−O(σ + σd/2). We now state our first result.
Lemma 1. Consider the random spherical model in Defini-
tion 1 and let σ < 1. For any t > 0, there exists a universal
constant C independent of M,N,D, d, t, and σ such that

P
[
ηO ≤ C(

√
D logD + t)/

√
M)
]
≥ 1− 2e−

t2

2 ,

P
[
cX̂ ,min ≤

√
2/πdρ(σ)− (2 + t/2)/

√
N
]
≤ 2e−

t2

2 ,

P
[
cÊ,max ≥ (1 + 2/

√
N)δ(σ) + t/

√
N
]
≤ 2e−

t2

2 . (10)

Although our result for cX̂ ,min reduces to the one for cX ,min
in Zhu et al. 2018a when E = 0, the concentration deriva-
tion for cX̂ ,min is more involved since in the noisy case and
under the above spherical statistical model, the columns of
X̂ now lie inside the unit sphere as opposed to on the sphere.
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Figure 2. Plots of RO/X̂ and RÊ/X̂ as a function of (a) σ and
(b) outlier ratio. Here we fix D = 30, d = 29, N = 1500, and
M/(M +N) = 0.7 in (a), and σ = 0.05 in (b).

Since δ(σ) = O(σd/4 +
√
σ), (10) essentially implies that

cÊ,max = O(σd/4 +
√
σ) with high probability 2.

Two more definitions are needed for our analysis:

RO/X̂ :=
M

N

ηO
cX̂ ,min

, RÊ/X̂ :=
cÊ,max

cX̂ ,min
, (11)

where ηO := ηO +D/M . RO/X̂ and RÊ/X̂ can be simply
viewed as outlier-to-inlier and noise-to-inlier type of ratios,
respectively. When we fix inliers and outliers, RÊ/X̂ is
proportional to the noise level (see Fig. 2a). Similarly, when
we fix inliers and noise level, RO/X̂ is proportional to the
number of outliers (see Fig. 2b).

2.3. Geometry of the critical points

For the rest of the analysis, let θ ∈ [0, π/2] be the principal
angle of a vector b ∈ SD−1 from the orthogonal comple-
ment subspace S⊥. Thus, b is normal to S if and only if
θ = 0. Using RO/X̂ and RÊ/X̂ defined in (11), we can
now characterize the geometry of the critical points of (3).
Lemma 2. Assume RO/X̂ < 1 and

32RÊ/X̂(√
R2

O/X̂
+8−3RO/X̂

) 3
2
(√

R2

O/X̂
+8+RO/X̂

) 1
2
< 1, (12)

then any critical point b∗ of problem (3) must have its prin-
cipal angle θ∗ from S⊥ satisfy:

θ∗ ≤ sin−1(t1) or θ∗ ≥ sin−1(t2), (13)

where 0 ≤ t1 ≤ t2 ≤ 1 are the two nonnegative roots of the
following quartic equation:

t4 +(R2
O/X̂ −1)t2 +4RO/X̂RÊ/X̂ t+4R2

Ê/X̂ = 0. (14)

First note that RO/X̂ < 1 ensures that the denominator of
the left hand side in (12) is well-defined. Since the func-

tion a 7→ f(a) =
(√
a2 + 8− 3a

) 3
2
(√
a2 + 8 + a

) 1
2 is

2We note that t

2
√
N

in (10) may be improved to a quantity
proportional to σ using a more sophisticated analysis.
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Figure 3. Plot of (a) t1 and (b) t2 when varying RO/X̂ and RÊ/X̂ .
In each plot, condition (12) holds only in the area below the curve,
which corresponds to valid pairs of (RO/X̂ , RÊ/X̂ ).

decreasing between [0, 1] with f(0) = 8 and f(1) = 0, (12)
implies that larger noise levels lead to smaller numbers of
outliers that DPCP can tolerate. With (12), it can be shown
that (14) has two nonnegative roots 0 ≤ t1 ≤ t2 ≤ 1, and
(13) implies that none of the critical points have principal
angle in (sin−1(t1), sin−1(t2)). Fig. 3 displays t1 and t2
while varying RO/X̂ and RÊ/X̂ under condition (12). One
can observe that smaller percentages of outliers and noise
levels lead to t1 being closer to 0 and t2 being closer to 1,
which means that critical points of (3) either lie in a neigh-
borhood of S⊥ or very close to S. The following bound
helps in further interpreting Lemma 2:

t1 ≤ 25RÊ/X̂ /(1−RO/X̂ )2. (15)

In particular, this means that t1 is close to 0 when RÊ/X̂

and RO/X̂ are small. More generally, for fixed O and X̂ ,
(15) guarantees that t1 is perturbed away from 0 by at most
the effective noise level, which makes sense intuitively.

When there is no noise (E = 0), Lemma 2 reduces to
Lemma 1 in Zhu et al. 2018a: RÊ/X̂ = 0 and RO/X̂ =

ηO/cX ,min, so that (12) always holds and (14) becomes
t4 + ((ηO/cX ,min)2 − 1)t2 = 0, which implies t1 = 0

and t2 =
√

1− (ηO/cX ,min)2. Nevertheless, we stress that
the proof for Lemma 2 is far more complicated than for
the noiseless case, partly because of the need to deal with
Sgn

(
(X + E)>b

)
as per the discussion right after (4).

2.4. Global optimality

Before characterizing the global solutions of (3), we recall
two outlier-based quantities

cO,min :=
1

M
min

b∈SD−1

∥∥O>b∥∥
1
, cO,max :=

1

M
max

b∈SD−1

∥∥O>b∥∥
1

that are already used by Zhu et al. 2018a;b and scales as
O( 1√

M
). We note that better distributed outliers lead to

smaller values of cO,max − cO,min. The next result gives
a condition under which global solutions to (3) lie in a
neighborhood of S⊥.
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Theorem 1. If RO/X̂ < 1, (12) holds, and

M

N

cO,max − cO,min

cX̂ ,min
< t2 − 2RÊ/X̂ , (16)

then any global minimizer b∗ of (3) must have its principal
angle θ∗ from S⊥ satisfy

θ∗ ≤ sin−1(t1), (17)

where 0 ≤ t1 ≤ t2 ≤ 1 are the nonnegative roots of (14).

Theorem 1 builds upon Lemma 2, with the intuition that
critical points that are close to the subspace S (i.e., for
which θ∗ ≥ sin−1(t2)) cannot be global minimizers as
they result in large objective values. As long as data points
are well-distributed (small cO,max − cO,min, large cX̂ ,min,
large t2) and effective noise is mild (small cÊ,max), (16) will
be satisfied and global minimizers must be close to S⊥.
When E = 0, we have already remarked that t1 = 0 and
t2 =

√
1− (ηO/cX ,min)2, which together with (16) and

(17) imply that global minimizers are orthogonal to S when

M

N

cO,max − cO,min

cX ,min
<
√

1− (ηO/cX ,min)2,

which is precisely Theorem 1 of Zhu et al. 2018a.

We further interpret the above global optimality result, via
the following probabilistic characterization.

Theorem 2. Consider the random spherical model of Defi-

nition 1 and let σ < 1. If 0 < t < 2
(√

2N
πd ρ(σ)− 2

)
, then

with probability at least 1− 10e−t
2/2, any global solution

to (3) must have its principal angle θ∗ from S⊥ satisfy

sin(θ∗) ≤
C1δ(σ) + t

2
√
N√

2
πdρ(σ)− C2

t
√
M+
√
DM logD
N − 4+t√

N

(18)

as long as

M
(

(4
√

2 +
√

2t)2 + C3(
√
D logD + t)2

)
≤ N2

( 1√
πd
ρ(σ)− C4δ(σ)− 4 + 3t

2
√

2N

)2
, (19)

where C1, C2, C3, C4 are universal constants that are inde-
pendent of N,M,D, d, t and σ.

The effect of the noise in perturbing the global solution
away from S⊥ is captured by (18), where the right hand side
(RHS) approaches 0 when σ → 0, except for the small term
t

2
√
N

, which as we stated after Lemma 1 can be improved
to a quantity proportional to σ. Moreover, (18) together
with δ(σ) = O(σd/4 +

√
σ) and ρ(σ) = 1−O(σ + σd/2)

imply that sin(θ∗) = O((
√
σ+σd/4)) when σ is small. The

inequality (19) suggests that, unlike existing state-of-the-art
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Figure 4. Plot of sin(θ∗) where θ∗ is the principal angle between
the computed solution b∗ to the DPCP problem (3) and S⊥ when
varying N and M for noise level (a) σ = 0 and (b) σ = 0.1. Here
D = 30 and d = 29.

O(N) outlier bounds (Lerman et al., 2015; Maunu et al.,
2019), DPCP can tolerate O(N2) outliers even for noisy
data. Fig. 4 verifies this point by plotting sin(θ∗) (b∗ is
computed via Algorithm 1).

3. Convergence Analysis of Noisy DPCP-PSGM

The convergence of DPCP-PSGM (Algorithm 1) has been
analyzed by Zhu et al. 2018a;b in the absence of noise. Their
main finding is that selecting the step size in a piecewise ge-
ometrically diminishing fashion guarantees piecewise linear
convergence to a vector orthogonal to S. In the noisy case,
one can only expect Algorithm 1 to converge to a neighbor-
hood of S⊥. A significantly more involved analysis yields
the following convergence result.

Theorem 3 (Piecewise linear convergence). Suppose that

NcX̂ ,min −NηX̂ ,Ê −
5
2
NcÊ,max −

7
2

√
N‖Ê‖2 > MηO, (20)

where ηX̂ ,Ê = 1
N

sup
(c,b,g)∈F

∥∥(I−bb>)X̂ sign(X̂
>
b+c·Ê

>
g)
∥∥
2

with F := {(c, b, g) : c ∈ [0,∞), g ∈ S⊥∩SD−1, b ∈ S ∩
SD−1}.3 Let {b̂k} be the sequence generated by Algorithm 1
with noisy data and initialization b̂0 whose principal angle
from the orthogonal subspace S⊥ satisfies

θ0 < tan−1
(
κX̃E

/νX̃E

)
, (21)

where κX̃E
:= NcX̂ ,min−NcÊ,max−

√
N‖Ê‖2 and νX̃E

:=

NηX̂ ,Ê +MηO +
√
N‖Ê‖2. Consider the following piece-

wise geometrically diminishing step size

µk =

{
µ0, k < K0,

µ0β
b(k−K0)/Kc+1, k ≥ K0,

(22)

where µ0 ≤ µ′ := 1/16

max{NcX̂ ,max,McO,max,
√
N‖X̂‖2} , β < 1,

b·c is the floor function, K0,K ∈ N are chosen such that

3ηX̂ ,Ê = O( 1√
N

) for the random spherical model.
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Figure 5. Convergence of DPCP-PSGM in both noiseless and noisy
case. θk is the principal angle of iterate b̂k from S⊥. The red
dotted line represents the upper bound on tan(θk) given by (23),
while the green dashed line indicates the step size (22).

K ≥ 2
βµ′(NcX̂ ,min−νX̃E

) and K0 ≥ tan(θ0)
µ0·∆ with

∆ := min
{
κX̃E

− tan(θ0)νX̃E
, 1

6
(NcX̂ ,min − νX̃E

)
}
> 0.

Then the principal angle θk of b̂k from S⊥ satisfies

tan(θk) ≤ µ0

µ′
βb(k−K0)/Kc + tan(θ′) for k ≥ K0, (23)

tan(θk) ≤ max{tan(θ0), µ0

µ′ + tan(θ′)} for k < K0 with

θ′ := tan−1

(
2(NcÊ,max +

√
N‖Ê‖2)

NcX̂ ,min − νX̃E

)
. (24)

Under the random spherical model and for small noise lev-
els, the main hypothesis of Theorem 3, (20) is satisfied as
long as there are at most M = O(N2) outliers. In that
regime, Theorem 3 guarantees that DPCP-PSGM converges
to a neighborhood of S⊥ providing data points are well-
distributed (small ηX̂ ,Ê , small ηO, large cX̂ ,min) and the

effective noise is mild (small cÊ,max and ‖Ê‖): (23) implies
that the principal angle θk decays in a piecewise linear rate
until θ′, which reflects the noise effect; see Fig. 5b. Also,
larger noise levels lead to larger cÊ,max and ‖Ê‖2, and thus
to larger θ′. If no noise is present, θ′ = 0 and Theorem 3 is
consistent with Zhu et al. 2018a; see Fig. 5a.

We note that for the sake of interpretability the final angle θ′

in (24) has intentionally been made looser than the analytical
bound θ∗ in (17). This causes no harm since it can be
shown that both angles scale as δ(σ). Finally, the spectral
initialization in Algorithm 1 can be shown to satisfy (21)
subject to some further mild conditions on the data.

4. Comparison with state-of-the-art
As noted in §1, DPCP is very closely related to least-
absolute-deviations subspace learning methods. Two impor-
tant representatives of that class are REAPER (Lerman et al.,
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(b) Lerman et al. 2015

Figure 6. Check whether (a) (16) and (b) (26) are satisfied (white)
or not (black) when varying the outlier ratio M/(M +N) and σ.
Here we fix D = 30, d = 29, and N = 1000.

2015) and the Geodesic-Gradient-Descent (GGD) method
of Maunu et al. 2019. For the case of a hyperplane, GGD
attempts to solve the same optimization problem as DPCP,
while REAPER a convex relaxation of it. In this section
we compare the results of this paper to those known for
REAPER and GGD. We show that the global optimality
conditions for DPCP given in the present paper are much
looser compared to those required for REAPER (§4.1). In
fact, they are an improvement even over conditions enabling
a local stability characterization of the function landscape
given by Maunu et al. 2019 (§4.2). Finally, we show that
for a suitable tuning of the step-size GGD is equivalent to
DPCP-PSGM (§4.3).

4.1. Comparison with REAPER (Lerman et al., 2015)

Theorem 2.1 of Lerman et al. 2015 asserts that any global
minimizer of the REAPER problem must satisfy

sin(θ∗) ≤
2NR(S)[

N
4
√
d
cX̂ ,min −MA (S)−NR(S)

]
+

, (25)

where R(S) := 1
N

∑N
j=1 ‖ε̂j‖2 ≥ cÊ,max is the total inlier

residual, A (S) := 1
M ‖O‖2‖PS⊥O‖2 ≥ 0 is an alignment

statistic that measures the amount of linear structure in the
outliers, and [α]+ = α if α > 0 and 0 otherwise. Here PS⊥
is the orthoprojection onto S⊥ and the overline spherization
operator normalizes the columns of a matrix. Note that (25)
is meaningful only when

MA (S)

NcX̂ ,min
<

1

4
√
d
−RÊ/X̂ . (26)

We compare the necessary condition (26) for REAPER to
(12) and (16) for DPCP. When there are no outliers (26)
requires RÊ/X̂ < 1

4
√
d
. By contrast, (12) only requires

RÊ/X̂ < 1
4 (see Fig. 3). More generally, in the presence of

outliers, MA (S) (the numerator in LHS of (26)) scales as
O(M) in a random model (Lerman et al., 2015), whereas the
quantityM(cO,max−cO,min) (the numerator in LHS of (16))
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Figure 7. Evaluation of (a) t1 and (b) (25), with D = 30 and N =
1500. In (b) for d = 29, we only plot (25) for M

M+N
∈ {0, 0.01}

since (26) does not hold for a mild size of the outlier ratio.

scales asO(
√
M); see Zhu et al. 2018b. Numerically, this is

captured in Fig. 6, in which we observe that (16) is satisfied
for a much larger range of outlier ratio and noise levels.
Finally, note that R(S) appears both in the numerator and
denominator in the RHS of (25), which makes the entire
upper bound blow up quickly when the noise level increases;
see Fig. 7b. In contrast, according to Theorem 1 and (15),
sin(θ∗) is roughly proportional to the effective noise level
(see Fig. 7a).

4.2. Comparison with the local optimality conditions of
Maunu et al. 2019

Let b∗ be a critical point of (3). Then, given 0 < η < γ <
π/2 such that a certain stability condition holds, Theorem 2
of Maunu et al. 2019 asserts that either

θ∗ < η or θ∗ > γ. (27)

Note that a tighter analysis corresponds to a smaller η (closer
to 0) and a larger γ (closer to π/2). To fairly compare (27)
and (13) numerically, we manually set η equal to arcsin(t1)
and compare arcsin(t2) and γ. Fig. 8 shows the compari-
son between γ and arcsin(t2) under different percentages
of outliers and noise levels. We can observe that arcsin(t2)
is always larger than γ by a significant amount, under the
restriction that η is equal to arcsin(t1), thus suggesting that
(13) is a tighter result compared with (27). Moreover, (27) is
sensitive to the variation of the outliers, while (13) is rather
stable (compare Fig. 8a to Fig. 8b). Finally, we mention that
the relationship between η and γ is not as clear as for our
t1 and t2, with the latter being the two non-negative roots
of the univariate quartic in (14). In conclusion, we believe
that Lemma 2 represents a theoretical and computational im-
provement over the important characterization of the critical
points of (3) given previously by Maunu et al. 2019.

4.3. Equivalence with GGD of Maunu et al. 2019

We now relate DPCP-PSGM to the GGD of Maunu et al.
2019. Towards that end, we consider the hyperplane
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Figure 8. Comparison between the quantity γ of Maunu et al. 2019
and arcsin(t2) in the hyperplane case with outlier ratio (a) 0.1 and
(b) 0.2. Here we fix D = 30, d = 29, and N = 3000.

case and interpret the GGD as finding a normal vector
instead of a basis for the hyperplane. Rewriting the sub-
gradient in Algorithm 1 as gk−1 = g̃k−1 + gk−1, where
g̃k−1 = (I − b̂k−1b̂

>
k−1)gk−1 is the Riemannian sub-

gradient and gk−1 = b̂k−1b̂
>
k−1gk−1, the GGD is the

same as Algorithm 1 except that the iterate is updated by
b̂\k = cos(µ\k)(b̂k−1 − tan(µ\k)g̃k−1/‖g̃k−1‖2), where µ\k
is the step size used in GGD. To relate b̂\k to b̂k in Algo-
rithm 1, we first rewrite bk = (1− µkg>k−1b̂k−1)(b̂k−1 −

µkg̃k−1

1−µkg>k−1b̂k−1
). Noting that b̂k is obtained by normalizing

bk, we have b̂\k = b̂k if we set µ\k = tan−1( µk‖g̃k−1‖2
1−µkg>k−1b̂k−1

).

Proposition 1. For the hyperplane case, with a suitable
choice of step size the GGD (Maunu et al., 2019) is equiva-
lent to DPCP-PSGM.

Thus, the convergence guarantee in Theorem 3 can be di-
rectly applied for GGD under a suitable choice of step size.
For the general case where the subspace has co-dimension
larger than 1, we conjecture that the analysis in Theorem 3
will be helpful for the convergence analysis of GGD.

5. Road Plane Estimation Using Real 3D Data
We use the experimental setup of Zhu et al. 2018a to further
compare DPCP, RANSAC, and alternative methods in the
task of 3D road plane detection. In this problem one is
given a 3D point cloud of a road scene and the goal is to
learn an affine plane A = H + t ⊂ R3 as a model for the
road. This is important in autonomous driving applications.
Here H is a plane through the origin with normal vector
b and t is its translation with respect to the origin; this
latter is the center of the laser sensor. Hence the task is to
estimate b and t, which are taken to be co-linear in order to
resolve the inherent ambiguity in estimating t. In turn, this
can be converted to a linear subspace learning problem by
working in homogeneous coordinates, i.e., by embedding
A into the linear hyperplane H̄ ⊂ R4 with normal vector
b̄ = [b> − t>b]>, through the mapping x 7→ [x> 1]>.
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Methods/metric ROC ˆ̄θ θ̂ t̂ iter. time

SVD 0.76 4.40 1.73 14% N/A 1
RANSAC×1 0.78 3.74 4.18 12% 3.8 31
RANSAC×10 0.91 1.58 2.85 5% 18.7 149
RANSAC×100 0.93 1.47 2.77 4% 64.1 515
`2,1-RPCA 0.77 4.35 1.72 14% 2.8 30
REAPER 0.88 2.48 1.07 8% 4.1 27
DPCP-IRLS 0.81 3.67 1.48 12% 3.0 29
DPCP-d 0.92 1.51 0.82 5% 6.5 16
DPCP-PSGM 0.92 1.59 0.76 5% 37.3 24

Table 1. 3D road plane estimation using 125 annotated frames of
the KITTI dataset. Running time is in msec.

We use the 3D point clouds from the KITTI dataset (Geiger
et al., 2013). In addition to the 7 frames annotated in Zhu
et al. 2018a, we further annotate 131 frames. Each point
cloud contains around 105 points with approximately 50%
outliers. The data are homogenized and normalized to unit
`2-norm. We compare DPCP-PSGM (Algorithm 1), DPCP-
IRLS and DPCP-d (Tsakiris & Vidal, 2018a) to RANSAC,
REAPER and `2,1-RPCA (Xu et al., 2010). We also include
SVD, which calculates b̄ as the bottom singular vector of
the data. Since DPCP-PSGM and DPCP-d are among the
fastest methods with comparable running times, we let them
run to convergence, and set the running time of the slowest
as time budget for the rest methods. We update the step size
in DPCP-PSGM via a modified backtracking line search,
which is known to perform well in practice. For RANSAC,
we also include a version with 10× and 100× that time
budget. We tune the parameters of the algorithms on a
randomly selected training set of 13 frames and use the
rest of the frames for evaluation. Each method is tuned to
achieve an optimal error and then re-tuned to be as fast as
possible without exceeding 5% of that error. The λ of `2,1-
RPCA is set to 1.92√

M
, the τ of DPCP-d is set to 2.76√

N+M
, µmin

for DPCP-PSGD is set to 10−9, and the relative convergence
accuracy, wherever applicable, is set to 10−6.

Table 1 reports geometric, clustering and algorithmic met-
rics for the various methods. Once a method has computed
an estimated normal vector ˆ̄b ∈ R4, we extract from it esti-
mates b̂, t̂. We report the corresponding estimation errors,
i.e., the angle ˆ̄θ between b̄∗ and ˆ̄b, the angle θ̂ between b∗

and b̂, and 100
∥∥t∗ − t̂∥∥

2
/ ‖t∗‖2 %, where b̄∗, b∗, t∗ are

the ground-truth values. By varying a threshold on the dis-
tances of all points to the estimated affine plane, the area
under the ROC curve is obtained4, with higher values indi-
cating better performance. Finally, the number of iterations
executed by each method and its running time in msec5 are

4For RANSAC this is also its internal thresholding parameter.
5Experiments done on a laptop with Intel i7-6700HQ @

2.6GHz CPU, 16GB 2133MHz DDR4 Memory.

GroundTruth RANSACx1

DPCP-PSGM RANSACx100

GroundTruth DPCP-PSGM

DPCP-IRLS DPCP-d

SVD REAPER

RANSACx1

RANSACx10 RANSACx100

Figure 9. Frame 328 of KITTY-CITY-71, with inliers in blue and
outliers in red. Top: 3D point clouds and estimated translations.
Ground-truth thresholding parameter is used for RANSAC. Bot-
tom: Projections of 3D point clouds onto the image.

also reported. Notably, not only DPCP-PSGM and DPCP-d
outperform RANSAC×1 and RANSAC×10, rather their
performance is comparable with that of RANSAC×100,
which they further surpass, e.g., in estimating the orienta-
tion of the normal vector b∗: RANSAC×100 is off by 2.77◦

on average, while DPCP-PSGM and DPCP-d only by 0.76◦

and 0.82◦ respectively; see also Fig. 9. On the other hand,
DPCP-IRLS and REAPER make heavy use of SVD, which
makes them slow to run on O(105) points, and eventually
inaccurate given the limited time budget.
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