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Abstract
The Dual Principal Component Pursuit (DPCP)
method has been proposed to robustly recover
a subspace of high relative dimension from cor-
rupted data. Existing analyses and algorithms of
DPCP, however, mainly focus on finding a nor-
mal to a single hyperplane that contains the in-
liers. Although these algorithms can be extended
to a subspace of higher codimension through a
recursive approach that sequentially finds a new
basis element of the space orthogonal to the sub-
space, this procedure is computationally expen-
sive and lacks convergence guarantees. In this
paper, we consider a DPCP approach for simulta-
neously computing the entire basis of the orthogo-
nal complement subspace (we call this a holistic
approach) by solving a non-convex non-smooth
optimization problem over the Grassmannian. We
provide geometric and statistical analyses for the
global optimality and prove that it can tolerate
as many outliers as the square of the number of
inliers, under both noiseless and noisy settings.
We then present a Riemannian regularity condi-
tion for the problem, which is then used to prove
that a Riemannian subgradient method converges
linearly to a neighborhood of the orthogonal sub-
space with error proportional to the noise level.

1. Introduction
Robustly learning a linear subspace from high-dimensional
corrupted data has become a fundamental problem in ma-
chine learning, pattern recognition, and computer vision.
Two forms of corruption commonly appear in real data:
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outliers and noise. Unlike inliers, which exactly lie in the
subspace, outliers are far from the subspace and do not ex-
hibit linear structure. Noise in the data means that the inliers
are perturbed so that they lie close to or on the subspace,
i.e., they are noisy inliers. Such corruptions of the dataset
cause significant challenges to the subspace recovery task.

In the past decade, many robust subspace recovery (RSR)
methods have been proposed (Lerman & Maunu, 2018b)
with the assumption that high-dimensional data can be well-
approximated by low-dimensional structures. Among them
the representatives include robust PCA (Brooks et al., 2013;
Markopoulos et al., 2018; Vaswani & Narayanamurthy,
2018), sparse subspace clustering (Elhamifar & Vidal, 2013;
You et al., 2016) and low-rank matrix methods (Rahmani
& Atia, 2017; Xu et al., 2012), which are normally solved
by convex optimization. However, the guarantees for the-
ory and algorithms are developed for a low-dimensional
underlying structure with d � D, where d and D are the
subspace dimension and ambient dimension, respectively.
This may be violated in the high relative dimension regime
where d/D ≈ 1. For example, many computer vision ap-
plications involve learning a hyperplane (d = D − 1), such
as pose estimation in multi-view geometry (Hartley & Zis-
serman, 2003) and 3D point cloud analysis (Geiger et al.,
2013; Silberman et al., 2012). It is also observed that in
ImageNet (Deng et al., 2009) the subspace spanned by deep
features extracted from images of a single object category
is of high relative dimension, making the existing methods
for outlier detection theoretically inapplicable to ImageNet.

Dual Principal Component Pursuit (DPCP) (Tsakiris &
Vidal, 2018) is an RSR method developed to tackle the high
relative dimension regime directly since it estimates a basis
for the orthogonal complement of a subspace S ⊂ RD by
solving a non-convex `1 co-sparse problem on the sphere:

min
b∈RD

‖X̃>b‖1 s. t. ‖b‖2 = 1, (1)

where X̃ ∈ RD×L is the dataset contaminated by outliers
and noise. In sharp contrast to the existing RSR methods
that that can tolerate at best M = O(N) outliers with N in-
liers (L =M+N ), DPCP can handleM = O(N2) outliers
even in the noisy case (Ding et al., 2019; Zhu et al., 2018).
However, problem (1) can only find a normal to a single
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hyperplane, while recovering a subspace with codimension
c = D − d > 1 requires recursive applications of (1) for
c times, with each time finding a normal to S that is also
orthogonal to previously computed normal vectors. This
procedure is computationally expensive and lacks a conver-
gence analysis. Moreover, the error accumulated during the
recursion makes its behavior difficult to analyze.

In this paper, we consider simultaneously estimating the
entire basis of the orthogonal complement subspace S⊥ by

min
B∈RD×c, B>B=I

{
f(B) :=

L∑
j=1

‖x̃>j B‖2
}
. (2)

We call problem (2) a holistic approach as compared with
the recursive approach with problem (1). Note that (2) is a
natural extension to (1) that seeks a matrixB with orthonor-
mal columns that are orthogonal to as many data points as
possible. Observe that (2) is an optimization problem on the
Grassmannian G(D, c) (Edelman et al., 1998), i.e., the set
of c-dimensional subspaces in RD, and thus is inherently
non-convex. Recently Zhu et al. (2019) proposed a Rie-
mannian Subgradient method (RSGM) for solving a general
non-convex optimization problem on the Grassmannian, and
showed in the noiseless case that the RSGM applied to (2)
converges linearly to an orthonormal basis of S⊥. Neverthe-
less, it is unclear whether a similar guarantee holds in the
noisy setting. Moreover, it is reasonable to ask under what
conditions every global solutionB∗ of (2) is an orthonormal
basis of S⊥ when no noise is present, or how the principal
angles between Span(B∗) and S⊥ behave as a function of
the noise level when the data is noisy.

Contributions. We provide geometric and statistical anal-
yses for the global optimality of the non-convex DPCP
problem (2) under both noiseless and noisy settings. We
show that with noiseless data, under certain conditions, any
global solution B∗ of (2) is an orthonormal basis of S⊥.
As the dataset is further contaminated with noise, we show
that the subspace angle between Span(B∗) and S⊥ is upper
bounded by an amount that is proportional to the noise level.
In both cases, we derive probabilistic arguments showing
that the DPCP problem (2) can handle M = O(N2) out-
liers, which is superior to other existing RSR methods that
can tolerate at best O(N) outliers in theory. Moreover, we
prove that the RSGM, with a proper initialization and a geo-
metrically diminishing step size choice, converges linearly
to a neighborhood of S⊥ whose radius is proportional to
the noise level, and thus generalizes the result in Zhu et al.
(2019). Experiments on synthetic data show that the holistic
approach (2) performs favorably against the recursive ap-
proach (1) as well as other RSR methods in the high relative
dimension regime.

2. Related Work
Principal Component Analysis (PCA) (Jolliffe, 1986) is
the conventional method of fitting a linear subspace to data.
PCA works well even when the data is noisy, but it is limited
when the dataset is corrupted by outliers since the `2-based
loss in PCA is sensitive to outliers. Another classical ap-
proach is the Random Sample Consensus (RANSAC) (Fis-
chler & Bolles, 1981), which repeatedly estimates a sub-
space from d randomly sampled points (d is the dimension
of the underlying subspace) within a time budget and then
outputs the best result according to the number of points
being categorized as inliers. Although RANSAC is popular
in practice, it is sensitive to a thresholding parameter and
the allocated time budget, and its exponential complexity
limits its impact in the high relative dimension regime.

There are numerous RSR methods proposed in recent years,
and we refer to Lerman & Maunu (2018b) for a compre-
hensive review. We limit our scope to approaches based on
least absolute deviations, which minimize the sum of the
distances between all data points and the subspace—exactly
the formulation (2) considered in this paper. Most of these
existing methods are designed for the low-relative dimen-
sion case (d � D). Parallel to this work, they consider
solving non-convex optimization problems over G(D, d) in-
stead of G(D, c). For example, Maunu et al. (2019) directly
estimates a basis V ∈ RD×d for the underlying subspace
S using a formulation similar to (2), which is solved by a
Geodesic Gradient Descent (GGD) method with a guarantee
of linear convergence, but only providing a local optimal-
ity analysis and proving that it can handle O(N) outliers.
Similarly, Lerman & Maunu (2018a) take the same opti-
mization problem on G(D, d) and solve it with Iteratively
Reweighted Least Squares (IRLS), but its theoretical guar-
antee is even weaker than that of GGD. There are also many
other methods that pertain to least absolute deviations but
rely on convex relaxations. For example, GMS (Zhang &
Lerman, 2014) and REAPER (Lerman et al., 2015) have
similar objective functions as (2), but their constraints are
constructed to be convex. Other examples are McCoy et al.
(2011); Xu et al. (2012), which involve convex low-rank
optimization but for different data modeling formulations.

The theoretical guarantees for the above RSR methods
are usually violated in the high relative dimension regime
(d/D ≈ 1), and the algorithms become computationally
expensive since optimizing over G(D, d) is very inefficient.
To the best of our knowledge, DPCP is the only method that
directly aims at recovering a subspace S of high relative
dimension. Tsakiris & Vidal (2018) first introduced the
idea of recursively learning a basis for S⊥ by solving (1).
However, its global optimality analysis is difficult to inter-
pret, thus making it unclear how many outliers it can tolerate.
Furthermore, it proposes to solve (1) with IRLS without con-
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vergence guarantees, while a provable linear programming
based approach is inefficient. Zhu et al. (2018) improves
the analysis of (1) with interpretable and tighter geometric
quantities, and for the first time it shows that DPCP can
handle O(N2) outliers. Moreover, it proposes an efficient
Projected Subgradient Method that converges linearly with
proper initialization. Nevertheless, neither Tsakiris & Vi-
dal (2018) nor Zhu et al. (2018) consider the corruption of
noise in the dataset. Ding et al. (2019) bridges this gap by
extending the theoretical and convergence analysis in Zhu
et al. (2018) to noisy data. So far, the previous work on
DPCP based on solving (1) computes a normal to a single
hyperplane that contains the inliers, which is cumbersome
and inefficient when recursively applied to finding a new
basis element of S⊥ for a subspace of higher codimension.
Our work successfully addresses this issue by proposing a
holistic approach that simultaneously computes the entire
basis of S⊥, and provides global optimality and convergence
theory of (2) under both noiseless and noisy settings.

3. Background
The setting considered in this paper is a unit `2-norm dataset
X̃ = [X + E O]Γ ∈ RD×L, where X = [x1 · · · xN ] ∈
RD×N are inlier points within a d-dimensional subspace
S of RD, E = [ε1 · · · εN ] ∈ RD×N are additive noise
imposed on inliers, O = [o1 · · · oM ] ∈ RD×M are outlier
points in RD that do not exhibit linear structure, and Γ is
an unknown permutation matrix. Our goal is to recover the
underlying subspace S from the corrupted data X̃ . We let
c := D − d denote the codimension of S. Since we are
interested in the high relative dimension regime with c� d,
it is more efficient to find the dual subspace S⊥ instead of
S. Intuitively, in the noiseless case (E = 0), if B is an
orthonormal basis of S⊥, then f(B) in (2) only depends on
the outliers and is insensitive to the choice ofB since out-
liers are unstructured, which motivates our formulation (2).

We parameterize the Grassmannian G(D, c) with orthonor-
mal matrices in the set O(D, c) := {B ∈ RD×c : B>B =
I}. In particular, when c = 1, we also use SD−1, i.e., the
unit sphere, as a substitute for O(D, 1). In addition, we
denote O(c, c) by O(c) for simplicity. Let S⊥ ∈ O(D, c)
be an orthonormal basis of S⊥. Since f in (2) is rotational
invariant, we consider equivalence classes of matrices. In
particular, forU ,V ∈ G(D, c) we sayU is equivalent toV
if Span(U) = Span(V ), and use U to represent the equiv-
alence class [U ] := {UR : R ∈ O(c)}. As the dataset
is contaminated with noise, a solutionB is expected to be
perturbed away from S⊥, which can be measured geometri-
cally by the principal angles between two subspaces.

Definition 1 (Knyazev & Zhu (2012)). Let U ,V ∈
RD×c be orthonormal matrices. The principal angles be-
tween Span(U) and Span(V ) are defined as θi(U ,V ) =

arccos(σi(U
>V )) for all i ∈ {1, 2, . . . , c}, where σi(·)

denotes the i-th largest singular value. The largest prin-
cipal angle θc(U ,V ) is used to define the subspace angle
between Span(U) and Span(V ).

With Definition 1, we are able to compute how close
Span(B) and Span(S⊥) = S⊥ are to one another. In
particular, when Span(B) = S⊥, we have θ1(B,S⊥) =
· · · = θc(B,S

⊥) = 0, which means that their subspace
angle is zero, thus justifying the definition.

The subdifferential of ‖a‖2 for any a ∈ Rc is given by

Sgn(a) =

{
{a/‖a‖2}, a 6= 0,

{d ∈ Rc : ‖d‖ ≤ 1}, a = 0.
(3)

An element of the set Sgn(a) of particular interest will be

sign(a) =

{
a/‖a‖2, a 6= 0,

0, a = 0.
(4)

The subdifferential of f in (2) atB is

∂f(B) =

L∑
j=1

x̃j Sgn(x̃
>
j B). (5)

Since the optimization problem (2) is taken over the Grass-
mannian G(D, c), we associate the optimality conditions
of (2) with Riemannian geometry (Edelman et al., 1998).
Letting ∂̃f denote the Riemannian subdifferential of f , it
follows from regularity of f and Yang et al. (2014) that
∂̃f(B) = (I−BB>)∂f(B), i.e., the projection of ∂f(B)
onto the tangent space of G(D, c) atB. Also,B is a critical
point of problem (2) if and only if 0 ∈ ∂̃f(B), which will
be used to study global optimality for (2) in the next section.

4. Global Optimality Analysis
In this section, we analyze the non-convex non-smooth
DPCP problem (2) in the noiseless setting (Section 4.1)
and noisy setting (Section 4.2). Towards that end, we first
define the random spherical model considered in this paper.
Definition 2 (Random spherical model). Consider a ran-
dom spherical model where the columns of O are drawn
uniformly from the sphere SD−1, the columns of noisy in-
liers X + E are drawn by first independently generating
inliers from N (0, 1dPS) and noise from N (0, σ

2

D ID), and
then projecting their sum onto SD−1, where d = dim(S),
PS is the ortho-projector onto S, and σ ≥ 0 controls the
amount of noise present in the inliers; under this model,
the SNR is E[‖X‖F ]/E[‖E‖F ] = 1/σ. In the following
analysis, we always assume σ < 1.

4.1. Noiseless Setting

Geometric quantities. We now introduce several geomet-
ric quantities that characterize the distributions of the inliers
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and outliers in the noiseless setting. For inliers, we have the
permeance statistic (Lerman et al., 2015):

cX ,min :=
1

N
min

b∈S∩SD−1
‖X>b‖1. (6)

Well-distributed inliers result in a large value of cX ,min due
to the fact that it is difficult to find a single direction b that
is orthogonal to most of the points. For outliers, we extend
the ηO quantity in Zhu et al. (2018) where the codimension
c = 1, to the more general case of c ≥ 1 by defining

ηO,c :=
1

M
max

B∈O(D,c)

∥∥(I−BB>)

M∑
i=1

oi sign(o
>
i B)

∥∥
F

(7)

which is the maximum norm of a Riemannian subgradient of
1
M ‖O

>B‖1,2. As an analogy to ηO , the ηO,c characterizes
how well the outliers are distributed in the ambient space,
with more uniformly distributed outliers leading to smaller
ηO,c. We remark that ηO,c ≡ ηO when c = 1. Besides
ηO,c, we also use another two quantities to describe the
distribution of outliers, namely, we extend the cO,min and
cO,max in Zhu et al. (2018) for c = 1 to the following:
cO,min,c :=

1
M minB∈O(D,c)

∑M
j=1 ‖o>j B‖2, cO,max,c :=

1
M maxB∈O(D,c)

∑M
j=1 ‖o>j B‖2. Well-distributed outliers

lead to large cO,min,c and small cO,max,c, and a small gap
between cO,max,c and cO,min,c.

To better understand the behaviors of the above geometric
quantities, we provide their concentration bounds.
Lemma 1. Consider the random spherical model in Def-
inition 2 with σ = 0. Then, for any t > 0, there exists a
constant C0 independent of N,M,D, d, c and t such that

P
[
cX ,min ≥

√
2/(πd)− (2 + t/2)/

√
N
]
≥ 1− 2e−

t2

2 ,

P
[
ηO,c ≤ C0(

√
cD logD + t)/

√
M
]
≥ 1− 2e−

t2

2 , (8)

P
[
cO,max,c − cO,min,c ≤ (4

√
2c+ t)/

√
M
]
≥ 1− 2e−

t2

2 .

One can see that cX ,min scales as O(1) while both ηO,c
and cO,max,c − cO,min,c scale as O(1/

√
M). Moreover,

the role of c can be seen clearly from (8): both ηO,c and
cO,max,c − cO,min,c tend to be larger as c increases.

Using the above geometric quantities, we have the following
lemma, which states the geometry of the critical points of (2)
in a deterministic sense.

Lemma 2. Suppose E = 0. Then, any critical point B∗

of (2) must either be an orthonormal basis for S⊥, or span a
subspace that has an angle from S⊥ larger than or equal to
θ� := arccos(MηO,c/NcX ,min) where ηO,c := ηO,c+

D
M .

Lemma 2 generalizes the special case c = 1 in Zhu et al.
(2018, Lemma 1). It says that, with noiseless data, any crit-
ical point of (2) either spans S⊥ or spans a subspace that

is far from S⊥. Note that for well-distributed inliers and
outliers (M/N and c fixed), the geometric location of B∗

becomes more restricted. Observe that any critical point
B∗ such that Span(B∗) is sufficiently close to S⊥ (angle
smaller than θ�) must satisfy Span(B∗) = S⊥. This moti-
vates the next result on the geometry of global minimizers.

Theorem 1. Suppose E = 0. Then, any global solutionB∗

to (2) must be an orthonormal basis for S⊥ as long as

M

N
·

√
η2O,c + (cO,max,c − cO,min,c)

2

cX ,min
< 1. (9)

Theorem 1 is an extension of Zhu et al. (2018, Theorem
1) for the hyperplane case. First note that cO,max,c −
cO,min,c → 0 as M → ∞ according to (8). Then (9) tells
us that, with fixed M/N and c, as long as we have more
and more data points that are well-distributed, (9) will be
satisfied and thus any global solution to (2) spans S⊥.1 Fur-
thermore, combining the global optimality condition (9) and
the concentration bounds in (8), one can derive the follow-
ing probabilistic result that characterizes global optimality
with noiseless data in a more interpretable way.

Theorem 2. Consider the random spherical model in Def-

inition 2 with σ = 0. Fix any 0 < t < 2
(√

2N
πd − 2

)
.

With probability at least 1 − 6e−t
2/2, any global solution

B∗ ∈ RD×c to (2) must be an orthonormal basis for S⊥ if

M
(
(4
√
c+ t)2 + C0(

√
cD logD + t)2

)
≤ N2

(√
2/(πd)− (2 + t/2)/

√
N
)2
,

(10)

where C0 is a universal constant that is independent of
N,M,D, d, c and t.

Condition (10) interprets the global optimality condition (9)
of Theorem 1 with natural quantities such as N,M,D, d
and c. It validates that the new formulation (2) of DPCP
on the Grassmannian G(D, c) is still able to tolerate O(N2)
outliers for recovering the entire orthonormal basis of S⊥.
Also, note that for fixed N , M , D, and d, the smaller c
becomes, the easier it is for condition (10) to be satisfied.
Particularly, in the hyperplane case c = 1, Theorem 2 re-
duces to the result of Zhu et al. (2018, Theorem 2).

4.2. Noisy Setting

We now consider the scenario when inliers X are further
contaminated with noise, i.e., σ > 0 and E 6= 0 in Defi-
nition 2. We decompose the noise term as E = Es + En,

1A similar theorem appears in Ding et al. (2020, Proposition
3), although they analyze a group-DPCP formulation different
from (2) designed specifically for homography estimation.
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where Es is the projection of E onto S and En is the pro-
jection onto S⊥. Observe that the term Es plays the same
role as inliers since its columns lie exactly in S, and that
the component En is the effective noise that influences the
global solution to (2), making it different from the noiseless
case. With this in mind, as in Ding et al. (2019), we separate
them out and denote X̂ := X + Es with Span(X̂ ) ⊂ S
and Ê := En with Span(Ê) ⊂ S⊥. Obviously, we have
X + E = X̂ + Ê , and we can rewrite the objective in (2) as

f(B) =

N∑
j=1

‖(x̂j + ε̂j)>B‖2 +
M∑
j=1

‖o>j B‖2, (11)

with x̂j and ε̂j the j-th column of X̂ and Ê , respectively.

Geometric quantities. First note that the previous quan-
tities related to outliers, i.e., ηO,c, cO,max,c and cO,min,c,
remain the same. For noisy inliers, since we have separated
out the effective noise, we have the following two extra
quantities with respect to X̂ and Ê:

cX̂ ,min :=
1

N
min

b∈S∩SD−1
‖X̂>b‖1,

cÊ,max,c :=
1

N
max

B∈O(D,c)

N∑
j=1

‖ε̂>j B‖2.
(12)

Note that cX̂ ,min is analogous to cX ,min in (6) by replacing

X with X̂ : the more well-distributed X̂ is, the larger cX̂ ,min
becomes. The quantity cÊ,max,c generalizes cÊ,max defined
in Ding et al. (2019) for c = 1, and quantifies the effective
noise level. Note that cÊ,max,c ≤

1
N

∑N
j=1 ‖ε̂j‖2, which is

the total inlier residual used in Lerman et al. (2015), but
cÊ,max,c also considers the geometry of the effective noise.

We now give concentration bounds for cX̂ ,min and cÊ,max,c

when σ ∈ (0, 1). To estimate their expectations, one has

E
[∣∣x̂>j b∣∣] ≥√2/(πd)ρ(σ), E

[
‖ε̂>j B‖2

]
≤ δ(σ) (13)

where ρ(σ) := (1 − σ)FD−d,d(1/σ), δ(σ) :=
√
σ +√

(1− σ)Fd,D−d(σ), and Fd1,d2(·) is the cumulative den-
sity function of the F-distribution with Fd1,d2(0) = 0 and
Fd1,d2(∞) = 1. It has been shown in Ding et al. (2019) that
δ(σ) = O(σd/4 +

√
σ) and ρ(σ) = 1−O(σ + σd/2).

Lemma 3. Consider the random spherical model defined
in Definition 2 with σ ∈ (0, 1). Then for any t > 0, we have

P
[
cX̂ ,min ≥

√
2/(πd)ρ(σ)− 2+t/2√

N

]
≥ 1− 2e−

t2

2 ,

P
[
cÊ,max,c ≤ (1 + 2

√
2c√
N

)δ(σ) + t√
N

]
≥ 1− 2e−

t2

2 .

(14)

As σ → 0, we know that ρ(σ) → 1 and δ(σ) → 0. In
particular, when σ = 0 (E = 0), the above result for cX̂ ,min

(a) Value of t1 (b) Value of t2

Figure 1. Plot of t1 and t2 in Lemma 4 given (RO/X̂ ,c, RÊ/X̂ ,c)
pair such that condition (16) holds true (area below the curve).

is the same as that of cX ,min in (8), but for cÊ,max,c it does
not immediately imply cÊ,max,c = 0 due to the existence of
the term t/

√
N (usually very small since N is very large

compared with t), which is an artifact of the proof.2

To simplify the presentation of the remaining analysis, let

RO/X̂ ,c :=
M

N

ηO,c
cX̂ ,min

, RÊ/X̂ ,c :=
cÊ,max,c

cX̂ ,min

, (15)

which can be viewed as outlier-to-inlier and noise-to-inlier
type of ratios (Ding et al., 2019), respectively. Now we are
ready to characterize the distribution of the critical points
of (2) when the dataset is also contaminated with noise.

Lemma 4. Assume RO/X̂ ,c < 1 and

RÊ/X̂ ,c <
1

32

(√
R2

O/X̂ ,c
+ 8− 3RO/X̂ ,c

) 3
2

·
(√

R2
O/X̂ ,c

+ 8 +RO/X̂ ,c
) 1

2 .
(16)

Any critical pointB∗ of problem (2) spans a subspace that
has an angle θ∗c from S⊥ satisfying

θ∗c ≤ sin−1(t1) or θ∗c ≥ sin−1(t2) (17)

where 0 ≤ t1 ≤ t2 ≤ 1 with

t2 :=

√
1− 1

4

(
RO/X̂ ,c +

√
R2

O/X̂ ,c
+ 8RÊ/X̂ ,c

)2
, (18)

and t1 being the smallest nonnegative root of

t4+(R2
O/X̂ ,c−1)t

2+4RO/X̂ ,cRÊ/X̂ ,ct+4R2
Ê/X̂ ,c = 0. (19)

The feasible region for (RO/X̂ ,c, RÊ/X̂ ,c) with condi-
tion (16) satisfied is shown as the area under the curve
in Figure 1, which implies that the outlier-to-inlier ratio and
the noise-to-inlier ratio cannot be very large at the same time.
In other words, larger noise levels restrict the number of

2We also provide another concentration bound for cÊ,max,c in
the supplemental material that is completely proportional to δ(σ).
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outliers that the DPCP problem (2) can tolerate. Next, one
can show that the quartic equation (19) must have two non-
negative roots (with t1 the smaller one), and condition (16)
ensures that t1 ≤ t2. Then, (17) indicates that any critical
point B∗ of the noisy problem (2) spans a subspace that
is close to either S⊥ or S. Figure 1 provides a better un-
derstanding of t1 and t2: with smaller outlier-to-inlier ratio
and noise-to-inlier ratio, t1 is closer to 0 (lighter) and t2 is
closer to 1 (darker), making the geometric location of B∗

more restricted. Compared with Lemma 2 in the noiseless
case whereB∗ is an exact orthonormal basis of S⊥ if it is
sufficiently far from S, here we can only guarantee that it
lies in a neighborhood of S⊥, i.e., θ∗c ≤ sin−1(t1), due to
the noise. One can further bound t1 (Ding et al., 2019) by

t1 ≤ 25RÊ/X̂ ,c/(1−RO/X̂ ,c)
2. (20)

When there is no noise, from (20) we have t1 = 0, and
from (18) we have t2 =

√
1−R2

O/X̂ ,c
, which is consistent

with Lemma 2. Moreover, (20) shows that t1 is small with
small outlier-to-inlier ratio and noise-to-inlier ratio, and is
proportional to the effective noise level. Finally, compared
with the critical point analysis for noisy problem (1) with
c = 1 in Ding et al. (2019), the proof technique used here
is different since problem (2) is defined over the Grass-
mannian, which requires consideration of the geometry of
subspaces in G(D, c). In particular, in Ding et al. (2019)
both t1 and t2 are defined by the nonnegative roots of (19),
while in this generalized analysis t2 is decoupled from (19)
(see (18)).

Using Lemma 4, we may now characterize the global solu-
tion of the noisy DPCP problem (2).

Theorem 3. If RO/X̂ ,c < 1 and (16) holds, and

R2
O/X̂ ,c +

(M
N

cO,max,c − cO,min,c

cX̂ ,min

+ 2RÊ/X̂ ,c

)2
+ 8RÊ/X̂ ,c < 1,

(21)

then any global solution B∗ of (2) must span a subspace
that has an angle θ∗c from S⊥ satisfying θ∗c ≤ sin−1(t1),
where 0 ≤ t1 ≤ 1 is the smallest nonnegative root of (19).

Condition (21) is sufficient to ensure that global solutions
of (2) span a subspace that is close to S⊥. We interpret (21)
as follows: with fixed M/N , as data points are increas-
ing (cO,max,c − cO,min,c → 0) and well-distributed (large
cX̂ ,min, small RO/X̂ ,c), and the effective noise is mild
(small RÊ/X̂ ,c), (21) will be satisfied and global solutions
of (2) must be close to S⊥. Note that in the noiseless case
condition (21) is equivalent to condition (9) and t1 = 0,
which means Theorem 3 is precisely Theorem 1. Next, we
give its probabilistic characterization.
Theorem 4. Consider the random spherical model in Def-
inition 2. Assume N > c. Then for any positive t <

Figure 2. Plot of the subspace angle between Span(B∗) and S⊥
with B∗ obtained from Algorithm 1 for (Left) noiseless case σ = 0
and (Right) noisy case σ = 0.1. Here we fix D = 30 and c = 5.

2
(√

2N
πd ρ(σ)−2

)
, any global solutionB∗ of (2) must span

a subspace that has an angle θ∗c from S⊥ satisfying

sin(θ∗c ) ≤
C1δ(σ) +

25t√
N√

2
πd
ρ(σ)− C2

t
√
M+
√
cDM logD
N

− 4+t

2
√
N

(22)

with probability at least 1− 10e−t
2/2, as long as

M
(
(8
√
2c+ 2t)2 + C3(

√
cD logD + t)2

)
(23)

≤ N2

[(√
2

πd
ρ(σ)− 4 + t

2
√
N

)2

− C4δ(σ)−
16t2

N
− 8t√

dN

]
,

where C1, C2, C3, C4 are universal constants that are inde-
pendent of N,M,D, d, c, t and σ.

Towards interpreting Theorem 4, first recall that δ(σ)→ 0
and ρ(σ) → 1 as σ → 0. Then, (22) indicates that
the angle θ∗c between S⊥ and the subspace spanned by a
global solution B∗ of (2) is close3 to zero as σ → 0, and
sin(θ∗c ) = O(σd/4 +

√
σ) which is on the same order of

δ(σ). Furthermore, the sufficient condition (23) implies that
problem (2) can also tolerate O(N2) outliers for learning
the entire orthonormal basis for S⊥ with noisy data, as il-
lustrated in Figure 2. Finally, we remark that condition (23)
does not necessarily have the same form of condition (10)
when σ = 0 or the condition in Ding et al. (2019, The-
orem 2) when c = 1 because the technical proof details
are different; however, they all reveal that the DPCP prob-
lems (both (1) and (2)) can roughly handleO( 1

cdD log2D
N2)

outliers, which is an apparent advantage over other RSR
methods that can only deal with O(N) outliers in theory.

Note that we focus on learning a subspace of high relative
dimension, where d/D ≈ 1 and the codimension c = D−d
is very small. As a result, the theoretical guarantees derived
in this section are well-suited for the regime of c = O(1).
In particular, when c = 1, the DPCP problem reduces to

3Note that the numerator of (22) has a small term 25t√
N

due to
the proof artifact of the concentration bound on cÊ,max,c, which
can be improved to be proportional to δ(σ) (see Footnote 2).
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Algorithm 1 Projected Riemannian Subgradient Method
Initialization: B0 ∈ O(D, c) and µ0 ∈ (0, 1);

1: for k = 0, 1, . . . do
2: Compute a Riemannian subgradient:

G(Bk) = (I−BkB
>
k )
(∑L

j=1 x̃j sign(x̃
>
j Bk)

)
;

3: Compute the step size µk according to a certain rule;
4: Update the iterate:

B̂k+1 ← Bk − µkG(Bk),

Bk+1 ← orth(B̂k+1);
5: end for

an optimization problem over the sphere. In general, the
bound M = O( 1

cdD log2D
N2) indicates that for very large

c, e.g., c = O(D), the DPCP approach can only handle a
small number of outliers. In fact, since the subspace is now
low-dimensional, methods designed for low-dimensional
subspaces are more appropriate.

5. Convergence Analysis of a Projected
Riemannian Subgradient Method

In this section, we study the projected Riemannian Sub-
gradient Method (RSGM) given by Algorithm 1 (orth(A)
denotes an orthonormal basis for Span(A)) for solving the
DPCP problem (2) over the Grassmannian G(D, c). It has
been shown in Zhu et al. (2019) that the RSGM applied
to (2) with noiseless data converges linearly to an orthonor-
mal basis, say S⊥, of S⊥. However, the analytical result
cannot be immediately generalized to the noisy case, in
which one can only expect that it at best converges to a
neighborhood of S⊥ as suggested by the noisy analyses
in Section 4.2. Note that the convergence analysis of RSGM
for problem (2) with noiseless data is built upon a Rieman-
nian Regularity Condition (RRC) (Zhu et al., 2019), which
is a local geometric property of problem (2) relative to a
point of interest, e.g., S⊥ in our case. We will show that
when data is corrupted by noise, the RRC for (2) only holds
outside a neighborhood of S⊥ with a radius proportional to
the effective noise level, which is then used to show that the
RSGM converges linearly to that neighborhood of S⊥.

Define the distance between anyA,B ∈ O(D, c) as

dist(A,B) := min
Q∈O(c)

‖B −AQ‖F . (24)

It follows Higham & Papadimitriou (1995) that the opti-
mum value is

√
2
∑c
i=1(1− cos(θi(A,B))) since the op-

timal rotation matrix Q for (24) is Q∗ = UV >, where
UΣV > is the SVD of A>B. Then we define the pro-
jection of B onto [A] as PA(B) = AQ∗, where Q∗ =
arg minQ∈O(c) ‖B −AQ‖F .

Proposition 1. The definition (24) of dist(A,B) is equiv-
alent to the subspace angle θc(A,B) in measuring the

similarity betweenA andB in the following sense:

sin(θc(A,B)) ≤ dist(A,B) ≤
√
2c · sin(θc(A,B)). (25)

Proposition 1 implies that θc(A,B) and dist(A,B) are
equivalent in characterizing how closeA andB are to each
other, while the latter is convenient for our convergence
analysis. Letting S⊥ be an orthonormal basis for S⊥, we
show that the DPCP problem (2) satisfies a particular RRC
in a ring-like neighborhood of S⊥.

Lemma 5 ((α, τ,S⊥)-RRC). For any τ > 0 satisfying

τ(1−RO/X̂ ,c − τ
2/2) ≥ 4

√
2cRÊ/X̂ ,c, (26)

let α := NcX̂ ,min((1 − τ
2/2) − RO/X̂ ,c)/(2

√
2c). Then

for anyB ∈ O(D, c) satisfying

τ ≥ dist(B,S⊥) ≥ ω := (2/α)NcÊ,max,c, (27)

there exists a Riemannian subgradient G(B) ∈ ∂̃f(B) that

〈−G(B),PS⊥(B)−B〉 ≥ α dist(B,S⊥). (28)

Also, for anyB ∈ O(D, c), we have

‖G(B)‖F ≤ ξ :=
√
N‖X + E‖2 +MηO,c. (29)

First, condition (27) specifies both an upper bound and a
lower bound that dist(B,S⊥) needs to satisfy: the upper
bound τ indicates that the RRC is a local geometric property
around S⊥, while the lower bound ω implies the RRC may
not hold within a small radius of S⊥ due to the existence
of noise. Note that the lower bound ω for dist(B,S⊥)
leads to a region around S⊥ inside which the RRC is not
guaranteed and its radius ω is proportional to the effective
noise level (vanishing as E → 0), making the entire lemma
reduce to the noiseless case as stated in Zhu et al. (2019).
We remark that (26) gives a valid range for τ and thus
ensures the validity of (27). Given dist(B,S⊥) ∈ [ω, τ ],
the RRC condition (28) states that a negative Riemannian
subgradient −G(B) has a small angle with the direction
pointing towards S⊥ atB. By Cauchy-Schwarz inequality
〈G(B),B − PS⊥(B)〉 ≤ ‖G(B)‖F dist(B,S⊥), and the
RRC condition gives ‖G(B)‖F ≥ α, which implies ξ ≥ α.

With the RRC for problem (2) stated in Lemma 5, we pro-
vide a convergence analysis for RSGM (Algorithm 1) with
two different strategies of updating the step size: constant
step size and geometrically diminishing step size.

Proposition 2. Let α, τ, ω, ξ be defined in Lemma 5. Sup-
pose the initialization B0 satisfies dist(B0,S

⊥) ≤ τ ,
and let {Bk} be the iterates generated with constant
step size µk ≡ µ satisfying µ ≤ α(τ − ω)/ξ2. Then
dist(Bk,S

⊥) ≤ max
{
dist(B0,S

⊥)− kαµ
2 , µξ

2

α + ω
}
.
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Figure 3. Convergence of Algorithm 1 for the noisy DPCP prob-
lem (2). For all the cases, we fix D = 30, N = 500 and outlier
ratio M/(M + N) = 0.7. We use a spectral initialization and
compute µ0 by a backtracking line search method. The relative
distance re-dist(Bk,S

⊥) is defined by dist(Bk,S
⊥)/
√
c.

Proposition 2 shows that with a constant step size, Algo-
rithm 1 ensures convergence to a neighborhood of S⊥ if
properly initialized. If dist(B0,S

⊥) > µξ2/α + ω, then
{Bk} will get closer to S⊥ until the iterates enter the region
where dist(Bk,S

⊥) ≤ µξ2/α+ ω, after which no further
decay is guaranteed. Also, a larger step size µ results in
faster convergence ofBk to a larger neighborhood of S⊥.

We now consider diminishing step sizes.

Theorem 5. Consider α, τ, ω and ξ defined in Lemma 5.
Suppose the initialization B0 of Algorithm 1 satisfies
dist(B0,S

⊥) ≤ τ , and let {Bk} be the iterates generated
with step size µk = µ0β

k satisfying

µ0 ≤ (α/ξ2)min
{
dist(B0,S

⊥)/2, τ − ω
}

and√
1− 2

αµ0

dist(B0,S⊥)
+

µ2
0ξ

2

dist2(B0,S⊥)
=: β ≤ β < 1.

(30)

Then it holds that dist(Bk,S
⊥) ≤ dist(B0,S

⊥)βk + ω.

With a strategy of geometrically diminishing step size in Al-
gorithm 1, Theorem 5 implies that the RSGM with proper
initialization converges to a neighborhood of S⊥ at a linear
rate, whose radius ω is proportional to the effective noise
level. We note that the decaying rate of dist(Bk,S

⊥) is de-
termined by the diminishing factor β, which is well-defined
in (30). A large β may lead to a slow convergence rate
while a small β, e.g., smaller than β, may lead to diver-
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Figure 4. Phase transition of the distance between the ground-truth
basis for the (dual) subspace and the computed basis by different
methods when varying the outlier ratio M/(M +N) and σ. The
lighter the color, the smaller the distance. The mean running time
for each method is also recorded. Here we fix D = 1000, c =
50, N = 10D, and the results are averaged over 100 experiments.

gence. Moreover, if no noise is present, we have ω = 0,
which implies a linear convergence to S⊥, and is consistent
with Zhu et al. (2019, Theorem 1). The above discussion
is illustrated in Figures 3a and 3b. We also demonstrate
the effect of codimension c = D − d on the RSGM when
applied to problem (2). As in Figures 3c and 3d, the RSGM
exhibits a similar pattern for various c: it converges linearly
to S⊥ with noiseless data, and converges to a neighborhood
of S⊥ when the noise level is moderate.

Simulations. We generate data from the random spheri-
cal model in Definition 2. All results are obtained on a
64-bit machine with 2.3GHz Intel Xeon Gold 5218 CPU.
We compare the performance of the proposed holistic ap-
proach (2) with the recursive approach (1) as well as other
methods that include PCA, REAPER (Lerman et al., 2015),
and GGD (Maunu et al., 2019). Both REAPER and GGD
are primarily designed for learning a low-dimensional sub-
space. However, since the objective problem of GGD is
similar to (2) except that it learns a basis for S instead of
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S⊥, we also apply GGD to learn a basis of S⊥, and call it
GGD-dual. We conduct the experiments with D = 1000,
c = 50 and N = 10D and plot the phase transition of the
distance between the ground-truth basis for the (dual) sub-
space and the basis computed by different methods when
varying the outlier ratio M

M+N and noise level σ.

As demonstrated in Figure 4, PCA and REAPER are the
least competitive methods in the test. We conjecture that
REAPER does not perform well as an RSR method be-
cause it needs more inlier points for the underlying convex
relaxation to be effective (in contrast to the non-convex ap-
proaches used by GGD and DPCP). Next, GGD, GGD-dual
and DPCP-holistic perform similarly well in terms of ac-
curately estimating a ground-truth basis. However, GGD
takes significantly longer since it optimizes over G(D, d),
which is inefficient in the high relative dimension regime.
We see that applying GGD to learn the dual subspace in
G(D, c), i.e., GGD-dual, is much faster, although not as fast
as our holistic DPCP approach that solves (2) with RSGM.
Finally, we note that the recursive DPCP approach based
on solving (1) with RSGM is slow due to its computational
cost; moreover, as the outlier ratio and noise level increase,
its estimation of the underlying subspace becomes less accu-
rate since the error tends to accumulate during the recursive
procedure. We conclude that the proposed holistic DPCP
approach performs favorably against the competitors in the
high relative dimension regime.

In practice, the codimension c of the underlying subspace
is usually unknown. Nevertheless, we can still apply the
proposed holistic DPCP approach with an estimated codi-
mension c+. In particular, the theoretical results in Section 4
can be naturally extended to the case of c+ ≤ c, and guaran-
tee that the holistic DPCP approach finds c+ normal vectors
to the underlying subspace. When c+ > c, one may em-
pirically observe that the holistic approach finds a solution
B ∈ RD×c+ consisting of c vectors (approximately) or-
thogonal to S. We can then further obtain an estimate of c
by computing {‖X̃>bj‖2}c

+

j=1 with bj the j-th column of
B and counting the number of columns that have relatively
small values.

6. Conclusions
We considered a holistic Dual Principal Component Pursuit
(DPCP) approach for robust subspace learning in the high
relative dimension regime, which involves non-convex opti-
mization on the Grassmannian and simultaneously estimat-
ing the entire basis of the orthogonal complement subspace.
We provided global optimality analyses, and showed it can
handle O((#inliers)2) outliers, in both noiseless and noisy
settings. We also proved that an RSGM method converges
linearly to a neighborhood of the orthogonal complement
subspace, whose region is proportional to the noise level.

Extending the holistic approach to multiple subspaces can
be the subject of future work.
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