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Fig. 1: Novel view synthesis for novel scenes using ONE reference view on Shiny [67],
LLFF [42], and MVImgNet [77] (top to bottom). Each triplet of images corresponds to the results
from GNT [60] (left), CaesarNeRF (middle) and groundtruth (right).

Abstract. Generalizability and few-shot learning are key challenges in Neural
Radiance Fields (NeRF), often due to the lack of a holistic understanding in pixel-
level rendering. We introduce CaesarNeRF, an end-to-end approach that lever-
ages scene-level CAlibratEd SemAntic Representation along with pixel-level
representations to advance few-shot, generalizable neural rendering, facilitating a
holistic understanding without compromising high-quality details. CaesarNeRF
explicitly models pose differences of reference views to combine scene-level se-
mantic representations, providing a calibrated holistic understanding. This cal-
ibration process aligns various viewpoints with precise location and is further
enhanced by sequential refinement to capture varying details. Extensive experi-
ments on public datasets, including LLFF, Shiny, mip-NeRF 360, and MVImgNet,
show that CaesarNeRF delivers state-of-the-art performance across varying num-
bers of reference views, proving effective even with a single reference image.
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1 Introduction

Rendering a scene from a novel camera position is essential in view synthesis [5,11,62].
The recent advancement of Neural Radiance Field (NeRF) [44] has shown impressive
results in creating photo-realistic images from novel viewpoints. However, conventional
NeRF methods are either typically scene-specific, necessitating retraining for novel
scenes [15, 16, 44, 67, 74], or require a large number of reference views as input for
generalizing to novel scenarios [6,58,60,76]. These constraints highlight the complex-
ity of the few-shot generalizable neural rendering, which aims to render unseen scenes
from novel viewpoints with a limited number of reference images.

Generalizing NeRF to novel scenes often involves using pixel-level feature embed-
dings encoded from input images, as seen in existing methods [59, 76]. These methods
adapt NeRF to novel scenes by separating the scene representation from the model
through an image encoder. However, relying solely on pixel-level features has its draw-
backs: it requires highly precise epipolar geometry and often overlooks occlusion in
complex scenes. Moreover, employing pixel-level features ignores the inherent inter-
connections within objects in the scene, treating the prediction of each pixel indepen-
dently. Prior attempts to utilize scene-level representation either suffers from style mis-
matches [35] during scene-wide rendering or have been limited to specific object cate-
gories [23, 39, 69]. With few input reference under generalizable settings, these limita-
tions become more pronounced, exacerbating the ambiguity in predictions due to biases
from camera viewpoints. Although recent diffusion-based models [18, 56] attempt to
address these issues through generative approaches, they struggle to effectively use the
input views as contextual references for specific scenes.

We present CaesarNeRF, a method that advances the generalizability of NeRF by
incorporating calibrated semantic representation. This enables rendering from novel
viewpoints using as few as one input reference view, as depicted in Figure 1. Our ap-
proach combines semantic scene-level representation with per-pixel features, enhanc-
ing consistency across different views of the same scene. The encoder-generated scene-
level representations capture both semantic features and biases linked to specific camera
poses. When reference views are limited, these biases can introduce uncertainty in the
rendered images. To counter this, CaesarNeRF integrates camera pose transformations
into the semantic representation, hence the term calibrated. By isolating pose-specific
information from the scene-level representation, our model harmonizes features across
input views, mitigating view-specific biases and, in turn, reducing ambiguity. In addi-
tion, CaesarNeRF introduces a sequential refinement process, which equips the model
with varying levels of detail needed to enhance the semantic features. Extensive exper-
iments on datasets such as LLFF [42], Shiny [67], mip-NeRF 360 [4], and the newly
released MVImgNet [77] demonstrate that CaesarNeRF outperforms current state-of-
the-art methods with limited reference views available, proving effective in generaliz-
able settings with as few as one reference view. The project can be found here.

In summary, our contributions are as follows:

– We introduce CaesarNeRF, which utilizes scene-level calibrated semantic represen-
tation to achieve few-shot, generalizable neural rendering. This innovation leads to
coherent and high-quality renderings.

https://haidongz-usc.github.io/project/caesarnerf
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– We integrate semantic scene context with pixel-level details, in contrast to existing
methods that rely solely on pixel-level features. We also address view-specific bi-
ases by modeling camera pose transformations and enhance the scene understand-
ing through the sequential refinement of semantic features.

– We demonstrate through extensive experiments that CaesarNeRF consistently out-
performs state-of-the-art generalizable NeRF methods across a variety of datasets.
Furthermore, integrating the Caesar pipeline into other baseline methods leads to
consistent performance gains, highlighting its effectiveness and adaptability.

2 Related work

Neural Radiance Field (NeRF) implicitly captures the density and appearance of
points within a scene or object [43, 44] and enables rendering from novel camera po-
sitions. In recent years, NeRF has witnessed improvements in a wide range of applica-
tions, such as photo-realistic novel view synthesis for large-scale scenes [40,68,80], dy-
namic scene decomposition and deformation [24,30,34,46–48,50,84,85], occupancy or
depth estimation [66,71,83], scene generation and editing [1,21,31,33,41,49,72,73,79],
and so on. Despite these advances, most methods still rely on the original NeRF and re-
quire retraining or fine-tuning for novel scenes not covered in the training data.

Generalizable NeRF aims to adapt a single NeRF model to multiple scenes by sep-
arating the scene representation from the model. This field has seen notable advance-
ments, with efforts focused on avoiding the need for retraining [8,20,38,64,65,75,76].
PixelNeRF [76] and GRF [59] pioneered the application of an image encoder to trans-
form images into per-pixel features, with NeRF functioning as a decoder for predicting
density and color from these features. MVSNeRF [6] introduces the use of a cost vol-
ume from MVSNet [75] to encode 3-D features from multiple views. Recognizing the
intrinsic connection between points along a ray, IBRNet [64] employs self-attention to
enhance point density predictions. Transformer-based [61] networks like GNT [10,60],
GeoNeRF [25], and GPNR [58] are explored as alternatives to volume rendering, con-
centrating on pixel and patch-level representations. Additionally, InsertNeRF [2] uti-
lizes hypernet modules to adapt parameters for novel scenes efficiently.

These methods primarily depend on image encoders to extract pixel-aligned features
from reference views. As a result, many of them lack a comprehensive understanding
of the entire scene. Furthermore, with few reference views, the features become inter-
twined with view-specific details, compromising the quality of the rendering results.

Few-shot Neural Radiance Field aims to render novel views using a limited num-
ber of reference images. To this end, various methods have been developed, incorporat-
ing additional information such as normalization-flow [78], semantic constraints [17,
22], depth cues [13, 52], geometry consistency [3, 29, 45, 63, 70], and frequency con-
tent [74]. Others [6, 9] emphasize pretraining on large-scale datasets.

While these methods offer reasonable reconstructions with few inputs, they typi-
cally still require training or fine-tuning for specific scenes. Moreover, these methods
usually require at least three reference images. With fewer than three, view-specific bi-
ases lead to ambiguity, complicating the rendering. Diffusion-based [12,35,57,82] and
other generative methods [27, 86] have been explored for single-view synthesis or gen-
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erative rendering, yet they are mostly limited to single-object rendering and generally
fall short for complex scenes, which often result in a style change.

CaesarNeRF confronts the above challenges by leveraging calibrated semantic rep-
resentations that exploit scene geometry and variations in camera viewpoints. As a re-
sult, CaesarNeRF overcomes the limitations of pixel-level features and reduces depen-
dency on external data or extensive pretraining, delivering high-quality renderings in
few-shot and generalizable settings.

3 The proposed method

We first outline the general framework of existing generalizable NeRF in Section 3.1.
Then, we present our proposed CaesarNeRF, as illustrated in Figure 2. This model inte-
grates elements of semantic representation, calibration, and sequential refinement, de-
tailed in Section 3.2, 3.3, and 3.4, respectively. The training objective is given in 3.5.

3.1 NeRF and generalizable NeRF

Neural Radiance Field (NeRF) [43, 44] aims to render 3D scenes by predicting both
the density and RGB values at points where light rays intersect the radiance field. For
a query point x ∈ R3 and a viewing direction d on the unit sphere S2 in 3D space, the
NeRF model F is defined as:

σ, c = F(x,d). (1)

Here, σ ∈ R and c ∈ R3 denote the density and the RGB values, respectively. After
computing these values for a collection of discretized points along each ray, volume
rendering techniques are employed to calculate the final RGB values for each pixel,
thus reconstructing the image.

However, traditional NeRF models F are limited by their requirement for scene-
specific training, making it unsuitable for generalizing to novel scenes. To overcome
this, generalizable NeRF models, denoted by FG, are designed to render images of
novel scenes without per-scene training. Given N reference images {In}Nn=1, an encoder-
based generalizable NeRF model FG decouples the object representation from the orig-
inal NeRF by using an encoder to extract per-pixel feature maps {Fn}Nn=1 from the
input images. To synthesize a pixel associated with a point x along a ray in direction
d, it projects {Fn}Nn=1 from nearby views and aggregates this multi-view pixel-level
information using techniques such as average pooling [76] or cost volumes [6]. This
results in a fused feature embedding F̃ , allowing FG to predict density σ and RGB
values c for each point along the ray, as expressed by:

σ, c = FG(x,d, F̃ ). (2)

In our method, we adopt the recently introduced fully attention-based generalizable
NeRF method, GNT [60], as both the backbone and the baseline. GNT shares a sim-
ilar paradigm with (2) but employs transformers [61] to aggregate pixel-level features
into F̃ . It uses a view transformer to fuse projected pixel-level features from reference
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Fig. 2: Overview of CaesarNeRF. CaesarNeRF employs a shared encoder to capture two types
of features from input views, including scene-level semantic representation {Sn} and pixel-level
feature representation {Fn}. We use the same encoder for both the scene-level semantic repre-
sentation and the pixel-level embeddings. Following calibration and aggregation of {Sn} from
various views, we concatenate it with the pixel-level fused feature, processed by the view trans-
former. Subsequent use of the ray-transformer, coupled with sequential refinement, enables us to
render the final RGB values for each pixel in the target view. The output features serve as the
input for the next stage, indicated by matching line colors.

views, and a ray transformer to combine features from different points along a ray,
eliminating the need for volume rendering. Further details about GNT can be found
in [60]. We also demonstrate that our approach can be extended to other generalizable
NeRF models, as discusses in Section 4.2.

3.2 Scene-level semantic representation

Both encoder-based generalizable NeRF models [6, 59, 76] and their attention-based
counterparts [58,60] mainly rely on pixel-level feature representations. While effective,
this approach restricts their capability for a holistic scene understanding, especially
when reference views are scarce. This limitation also exacerbates challenges in resolv-
ing depth ambiguities between points along the rays, a problem that becomes more
pronounced with fewer reference views.

To address these challenges, we introduce semantic representations aimed at enrich-
ing the scene-level understanding. We utilize a shared CNN encoder and apply a Global
Average Pooling (GAP) to its C-dimensional output feature map, generating N global
feature vectors {Sn}Nn=1 corresponding to each input view. These feature vectors are
then averaged to form a unified scene-level representation S, i.e.,

S =
1

N

N∑
n=1

Sn ∈ RC . (3)

In GNT [60], which uses a view transformer to aggregate pixel-level features into an
L-dimensional vector F̃ , we extend this by concatenating F̃ with S to construct a
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(a) “L: green, R: red" (b) “L: red, R: green"

Fig. 3: An illustration of conflicting semantic meanings from multiple viewpoints of the same
object. When observing the cup from distinct angles, the features extracted after pooling retain
spatial information but are inconsistent in the scene-level semantic understanding, leading to
conflicts across various reference images after aggregation.

global-local embedding E, as formulated by:

E = Concat(F̃ ,S) ∈ RL+C . (4)

This combined embedding E is then subjected to the standard self-attention mechanism
used in GNT [60]. This approach enables the scene-level semantic representation (S)
to integrate with per-point features (F̃ ), offering a more nuanced understanding at both
levels. It also allows each point to selectively draw from the scene-level information.
To maintain dimensional consistency across the input and output layers of multiple
transformer modules, we employ a two-layer MLP to project the enhanced features
back to the original dimension L of the per-point embedding F̃ .

3.3 Calibration of semantic representation

The integration of the scene-level semantic representation S, generated through simple
averaging of global feature vectors as in (3), improves rendering quality. However, this
approach has limitations when dealing with multiple views. As illustrated in Figure 3,
viewing the same object from distinct angles may retain spatial attributes but can lead to
conflicting semantic meanings. Merely averaging these global feature vectors without
accounting for camera positions can result in a distorted scene-level understanding.

To mitigate this inconsistency, we propose a semantic calibration technique using
feature rotation. This adjustment aligns the semantic representation across different
camera poses. Our inspiration comes from the use of camera pose projection in comput-
ing the fused pixel-level feature F̃ and is further motivated by [51], which demonstrates
that explicit rotation operations in feature spaces are feasible. Unlike point clouds
in [51] that inherently lack a defined canonical orientation, NeRF explicitly encodes
differences between camera viewpoints, thereby enabling precise calibration between
the reference and target images.

Building on this observation, we calculate calibrated semantic representations {S̃n}Nn=1

from the N original semantic representations {Sn}Nn=1 derived from the reference
views. We accomplish this by leveraging their respective rotation matrices {Tn}Nn=1
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Fig. 4: Visualization of decoded feature maps for “orchid” in LLFF dataset, produced by ray
transformers [60] at different stages. From left to right, the transformer stages increase in depth.

to model the rotational variations between each input view and the target view. The
alignment of the original semantic features is performed as follows:

S̃n = P(Tn ·P−1(Sn)), where Tn = T w2c
out · T c2w

n . (5)

Here, T c2w
n is the inverse of the extrinsic matrix used for In, and T w2c

out is the extrinsic
matrix for the target view. P(·) and P−1(·) are the flattening and inverse flattening
operations, which reshape the feature to a 1D vector of shape 1-by-C and a 2D matrix
of shape 3-by-C3 , respectively.

Note that for the extrinsic matrix, we consider only the top-left 3× 3 submatrix that
accounts for rotation. Using GAP to condense feature maps of various sizes into a 1-by-
C feature vector eliminates the need for scaling parameters in the semantic represen-
tation. As a result, modeling the intrinsic matrix is unnecessary, assuming no skewing,
making our approach adaptable to different camera configurations.

With the calibrated semantic features {S̃n}Nn=1 for each reference view, we average
these, similar to (3), to obtain the calibrated scene-level semantic representation S̃, i.e.,

S̃ =
1

N

N∑
n=1

S̃n ∈ RC . (6)

Finally, akin to (4), we concatenate the pixel-level fused feature F̃ with the calibrated
scene-level semantic representation S̃ to form the final global-local embedding Ẽ:

Ẽ = Concat(F̃ , S̃) ∈ RL+C . (7)

This unified embedding then feeds into ray transformers, passing through standard self-
attention mechanisms. In the original GNT [60], multiple view transformers and ray
transformers are stacked alternately for sequential feature processing. The last ray trans-
former integrates features from multiple points along a ray to yield the final RGB value.
We denote the corresponding feature representations at stage k as F̃ (k) and Ẽ(k). No-
tably, the calibrated semantic representation S̃ remains constant across these stages.

3.4 Sequential refinement

While leveraging S̃ improves consistency, a single, uniform S̃ may not be adequate for
deeper layers that demand more nuanced details. In fact, we find that deeper transform-
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ers capture finer details compared to shallower ones, as shown in Figure 4. To address
this limitation, we introduce a sequential semantic feature refinement module that pro-
gressively enriches features at each stage. Specifically, we learn the residual ∆(k) to
update S̃ at each stage k as follows:

S̃(k+1) ← S̃(k) +∆(k). (8)

Here, ∆(k) is calculated by first performing specialized cross-attentions between S̃(k)

and the original, uncalibrated per-frame semantic features {Sn}Nn=1 (see Figure 2),
followed by their summation. Our goal is to fuse information from different source
views to enrich the scene-level semantic representation with features from each refer-
ence frame. With this sequential refinement, we combine S̃(k) with F̃ (k) at each stage,
yielding a stage-specific global-local embedding Ẽ(k), which completes our approach.

Discussion. In scenarios with few reference views, especially when limited to just
one, the primary issue is inaccurate depth estimation, resulting in depth ambiguity [12].
This compromises the quality of images when rendered from novel viewpoints. Despite
this, essential visual information generally remains accurate across different camera
poses. Incorporating our proposed scene-level representation improves the understand-
ing of the overall scene layout [7], distinguishing our approach from existing generaliz-
able NeRF models that predict pixels individually. The advantage of our approach is its
holistic view; the semantic representation enriches per-pixel predictions by providing
broader context. This semantic constraint ensures that fewer abrupt changes between
adjacent points. Consequently, it leads to more reliable depth estimations, making the
images rendered from limited reference views more plausible.

3.5 Training objectives

During training, we employ three different loss functions:
MSE loss. The Mean Square Error (MSE) loss is the standard photometric loss used

in NeRF [43]. It computes the MSE between the actual and predicted pixel values.
Central loss. Since we project the view-level features from different input camera

poses to the shared target view, we introduce a central loss to ensure frame-wise cali-
brated semantic features {S̃n}Nn=1 are consistent when projected onto the same target
view, which is defined as:

Lcentral =
1

N

N∑
n=1

∥∥∥S̃n − S̃
∥∥∥
1
. (9)

Point-wise perceptual loss. During the rendering of a batch of pixels in a target
view, we inpaint the ground-truth image by replacing the corresponding pixels with the
predicted ones. Then, a perceptual loss [26] is computed between the inpainted image
and the target image to guide the training process at the whole-image level.

The final loss function is formulated as follows:

L = LMSE + λ1Lcentral + λ2Lperc. (10)

Empirically, we set λ1 = 1 and λ2 = 0.001, following [32].
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Table 1: Results for generalizable scene rendering on LLFF with few reference views. GeoNeRF,
MatchNeRF, and MVSNeRF necessitate variance as input, defaulting to 0 for single-image cases,
hence their results are not included for 1-view scenarios.

Method
1 reference view 2 reference views 3 reference views

PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑)

PixelNeRF [76] 9.32 0.898 0.264 11.23 0.766 0.282 11.24 0.671 0.486
GPNR [58] 15.91 0.527 0.400 18.79 0.380 0.575 21.57 0.288 0.695
NeuRay [38] 16.18 0.584 0.393 17.71 0.336 0.646 18.26 0.310 0.672
GeoNeRF [25] - - - 18.76 0.473 0.500 23.40 0.246 0.766
MatchNeRF [8] - - - 21.08 0.272 0.689 22.30 0.234 0.731
MVSNeRF [6] - - - 19.15 0.336 0.704 19.84 0.314 0.729
IBRNet [64] 16.85 0.542 0.507 21.25 0.333 0.685 23.00 0.262 0.752
GNT [60] 16.57 0.500 0.424 20.88 0.251 0.691 23.21 0.178 0.782
Ours 18.31 0.435 0.521 21.94 0.224 0.736 23.45 0.176 0.794

4 Experiments

In this section, we first discuss our experimental setups and other details required for our
experiments in Section 4.1, followed by our results for different experimental settings,
along with ablation studies and analysis in Section 4.2.

4.1 Experimental setups

Datasets. Firstly, following [60], we construct our training data from both synthetic and
real data. This collection includes scanned models from Google Scanned Objects [14],
RealEstate10K [81], and handheld phone captures [64]. For evaluation, we utilize real
data encompassing complex scenes from sources such as LLFF [42], Shiny [67], and
mip-NeRF 360 [4]. Additionally, we train and test our model using the recently released
MVImgNet dataset [77]. We adhere to the official split, focusing on examples from the
containers category, and select 2,500 scenes for training. During inference, we choose
100 scenes, using their first images as target views and the spatially nearest images as
references. Since MVImgNet does not provide camera poses, we utilize COLMAP [54,
55] to deduce the camera positions within these scenes.

Implementation details. CaesarNeRF is built upon GNT [60], for which we main-
tain the same configuration, setting the ray and view transformers stack number (K) to
8 for generalizable setting and 4 for single-scene setting. The feature encoder extracts
bottleneck features, applies GAP, and then uses a fully connected (FC) layer to re-
duce the input dimension C to 96. Training involves 500,000 iterations using the Adam
optimizer [28], with learning rate set at 0.001 for the feature encoder and 0.0005 for
CaesarNeRF, halving them every 100,000 iterations. Each iteration samples 4,096 rays
from a single scene. In line with [60], we randomly choose between 8 to 10 reference
views for training, and 3 to 7 views when using the MVImgNet [77].

Baseline methods. We compare CaesarNeRF with several state-of-the-art meth-
ods suited for generalizable NeRF applications, including earlier works such as MVS-
NeRF [6], PixelNeRF [76], and IBRNet [64], alongside more recent ones, including
GPNR [58], NeuRay [38], GNT [60], GeoNeRF [25] and MatchNeRF [8].
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Table 2: Results for generalizable scene rendering on Shiny with few reference views.

Method
1 reference view 2 reference views 3 reference views

PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑)

MatchNeRF [8] - - - 20.28 0.278 0.636 20.77 0.249 0.672
MVSNeRF [6] - - - 17.25 0.416 0.577 18.55 0.343 0.645
IBRNet [64] 14.93 0.625 0.401 18.40 0.400 0.595 21.96 0.281 0.710
GNT [60] 15.99 0.548 0.400 20.42 0.327 0.617 22.47 0.247 0.720
Ours 17.57 0.467 0.472 21.47 0.293 0.652 22.74 0.241 0.723

Table 3: Results for generalizable scene rendering on mip-NeRF 360 with few reference views.

Method
1 reference view 2 reference views 3 reference views

PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑)

MatchNeRF [8] - - - 17.00 0.566 0.392 17.26 0.551 0.407
MVSNeRF [6] - - - 14.23 0.681 0.366 14.29 0.674 0.406
IBRNet [64] 14.12 0.682 0.283 16.24 0.618 0.360 17.70 0.555 0.420
GNT [60] 13.48 0.630 0.314 15.21 0.559 0.370 15.59 0.538 0.395
Ours 15.20 0.592 0.350 17.05 0.538 0.403 17.55 0.512 0.430

4.2 Results and analysis

We compare results in two settings: a generalizable setting, where the model is trained
on multiple scenes without fine-tuning during inference for both few and all reference
view cases, and a single-scene setting where the model is trained and evaluated on
just one scene. Following these comparisons, we conduct ablation studies and test the
generalizability of our method with other state-of-the-art approaches.

Generalizable rendering. In the generalizable setting, we adopt two training strate-
gies. First, we train the model on multiple datasets as described in Section 4.1 and eval-
uate on LLFF [42], Shiny [67] and mip-NeRF 360 [4] datasets. In addition, the model
is trained and tested on the MVImgNet [77] for object-centric generalizability.

(a) LLFF, Shiny, and mip-NeRF 360. The results for few-reference view scenarios
on these datasets are shown in Tables 1, 2 and 3, respectively. Methods like MatchN-
eRF [8], MVSNeRF [75], and GeoNeRF [25] require at least two reference views. On
the LLFF dataset, all methods experience a performance decline as the number of views
decreases. CaesarNeRF, however, consistently outperforms others across varying refer-
ence view numbers, with the performance gap becoming more significant with fewer
views. For example, with 3 views, while IBRNet [64] and GNT [60] have comparable
PSNRs, CaesarNeRF demonstrates a more substantial lead in LPIPS and SSIM metrics.

Similar patterns are observed on the Shiny [67] and mip-NeRF 360 [4] datasets. We
apply the highest-performing methods from the LLFF evaluations and report the results

Table 4: Results on MVImgNet across varying numbers of reference views. ‘C.’ represents the
use of calibration before averaging.

Method
1 reference view 2 reference views 3 reference views 4 reference views 5 reference views

PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑)

IBRNet 19.14 0.458 0.595 24.38 0.266 0.818 25.53 0.203 0.858 25.99 0.190 0.867 26.12 0.188 0.867
GNT 22.22 0.433 0.678 26.94 0.236 0.850 27.41 0.206 0.870 27.51 0.197 0.875 27.51 0.194 0.876
Ours w/o C. 23.61 0.371 0.718 26.34 0.274 0.817 27.10 0.228 0.850 27.30 0.210 0.862 27.34 0.203 0.865
Ours 24.28 0.334 0.747 27.34 0.215 0.856 27.82 0.190 0.875 27.92 0.181 0.881 27.92 0.179 0.882
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Table 5: Results of per-scene optimization on LLFF, in comparison with state-of-the-art methods.

Method LLFF [42] NeRF [44] NeX [67] GNT [60] Ours

PSNR (↑) 23.27 26.50 27.26 27.24 27.64
LPIPS (↓) 0.212 0.250 0.179 0.087 0.081
SSIM (↑) 0.798 0.811 0.904 0.889 0.904

Table 6: Results on LLFF for few-shot generalization after adapting Caesar to other baselines.

Method
1 reference view 2 reference views 3 reference views

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

MatchNeRF [8] - - - 20.59 0.775 0.276 22.43 0.805 0.244
+ Caesar - - - 21.55 0.782 0.268 22.98 0.824 0.242

IBRNet [64] 16.85 0.507 0.542 21.25 0.685 0.333 23.00 0.752 0.262
+ Caesar 17.76 0.543 0.500 22.39 0.740 0.275 23.67 0.772 0.242

for those that produce satisfactory outcomes with few reference views. CaesarNeRF
maintains superior performance throughout. Notably, for complex datasets like mip-
NeRF 360 [4], which have sparse camera inputs, the quality of rendered images gener-
ally decreases with fewer available reference views. Nonetheless, CaesarNeRF shows
the most robust performance compared to the other methods.

(b) MVImgNet. We extend our comparison of CaesarNeRF with GNT [60] and
IBRNet [64] on the MVImgNet dataset, focusing on object-centric scenes, as shown
in Table 4. We examine a variant of CaesarNeRF where semantic calibration is substi-
tuted with simple feature averaging from multiple frames. While the performance of all
methods improves with more views, CaesarNeRF consistently outperforms GNT and
IBRNet. Notably, CaesarNeRF with feature averaging surpasses GNT in 1-view case
but lags with additional views, implying that the absence of calibration lead to ambigu-
ities when rendering from multiple views.

Per-scene optimization. Beyond the multi-scene generalizable setting, we demon-
strate per-scene optimization results in Table 5. We calculate the average performance
over 8 categories from the LLFF dataset [42]. CaesarNeRF consistently outperforms

Table 7: Ablations on the semantic representation length R, sequential refinement (Seq.) and
calibration (Cali.). ‘Ext.’ denotes the extension of per-pixel feature to a length of 64 in GNT.

Model Variations
PSNR (↑) LPIPS (↓) SSIM (↑)

R len. Seq. Cali.

(Baseline GNT) 20.93 0.185 0.731

Ext. 20.85 0.173 0.735
+32 21.43 0.152 0.763
+64 21.49 0.149 0.766
+96 21.46 0.150 0.766

+128 21.49 0.147 0.763

+ 96 ✓ 21.53 0.146 0.770
+ 96 ✓ 21.51 0.147 0.769
+ 96 ✓ ✓ 21.67 0.139 0.781
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IBRNet [64] GPNR [58] NeuRay [38] CaesarNeRF Ground-truth

(a) Using one image as reference view.

(b) Using two images as reference view.

Fig. 5: Comparative visualization of our proposed method against other state-of-the-art methods.

nearly all state-of-the-art methods in the comparison, across all three metrics, showing
a significant improvement over our baseline method, GNT [60].

Adaptability. To test the adaptability of our Caesar pipeline, we apply it to two
other state-of-the-art methods that use view transformers, namely MatchNeRF [8] and
IBRNet [64]. We demonstrate in Table 6 that our enhancements in scene-level semantic
understanding significantly boost the performance of these methods across all metrics.
This indicates that the Caesar framework is not only beneficial in our CaesarNeRF,
which is based on GNT [60], but can also be a versatile addition to other NeRF pipelines
with view transformers to aggregate different input views.

Ablation analysis. We conduct ablation studies on the “orchid” scene from the
LLFF dataset, with findings detailed in Table 7. Testing variations in representation and
the impact of the sequential refinement and calibration modules, we find that increasing
the latent size in GNT yields marginal benefits. However, incorporating even a modest
semantic representation size distinctly improves results. The length of the semantic rep-
resentation has a minimal impact on quality. Our ablation studies indicate that while se-
quential refinement and calibration each offer slight performance gains, their combined
effect is most significant. In a single-scene context, semantic information is effectively
embedded within the representation, making the benefits of individual modules subtler.
Together, however, they provide a framework where sequential refinement can leverage
calibrated features for deeper insights.
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Target Image GNT CaesarNeRF Target Image GNT CaesarNeRF

Fig. 6: Depth estimation prediction using one reference view (first row) and two reference views
(second row) as input from LLFF comparing CaesarNeRF with GNT.

Source Image Smallest Distance 2nd Smallest Distance Largest Distance 2nd Largest Distance

fortress chesstable (0.45) colorfountain (0.50) fenceflower (1.91) pond (1.80)

fern playground (0.46) bikes (0.50) peppers (2.02) apples (2.01)

Fig. 7: Largest and smallest distances for two examples from LLFF test split when matching
with training scenes. Numbers (×10−2) denote the L-2 distance to the source image within the
semantic feature space.

Visualizations. We present our visualization results in Figure 5, where we compare
our method with others using one or two views from the LLFF dataset. Additional
visual comparisons are provided in the supplementary materials. These visualizations
highlight that in scenarios with few views, our method significantly surpasses other
generalizable NeRF models, particularly excelling when only a single view is available.
CaesarNeRF demonstrates rendering with sharper boundaries and more distinct objects.

Depth estimation. We extend our evaluation to depth prediction within the LLFF [42]
dataset, focusing on challenges presented by few reference views, such as scenarios
with just one or two images. In a comparison between CaesarNeRF and GNT [60], we
observe in Figure 6 that GNT struggles to accurately capture the relative positions of
objects when reference images are sparse. For instance, with only a single view of a
flower, CaesarNeRF precisely indicates the flower’s proximity to the camera compared
to the leaves in the background, a distinction that GNT fails to make. Furthermore, the
depth estimations provided by CaesarNeRF are consistently more reliable. In the horn
example involving two views, CaesarNeRF offers better boundary delineation, showing
particular strength in handling reflective surfaces such as grass in the background.

Semantic analysis for S̃. To assess whether the calibrated semantic representa-
tion S̃ truly captures semantic details of the scene, we analyze the highest and lowest
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(a) leaves (b) orchid

Fig. 8: Synthetic results for two examples from LLFF [42], “leaves” and “orchid”, using zero
1-to-3 [35] with one reference image as input and 2 degrees of vertical shift. The left image of
each pair is the input, and the right one is the output of zero 1-to-3 [35].

response based on the L-2 distance between features from two different scenes, inter-
preting smaller distances as greater similarity. We consider the first image from each
category in the LLFF dataset as a reference and extract the scene-level representation
for the ten closest views to this reference image using CaesarNeRF.

In Figure 7, we present two examples, “room” and “fortress”, from the LLFF dataset,
representing the first image of these categories alongside images corresponding to the
top-2 highest and lowest responses. This analysis reveals that the scene-level representa-
tion predominantly emphasizes structural information and objects of similar categories.
For instance, with the source image “room”, the highest responses correlate with im-
ages featuring table-like structures, indicating an object-centric focus. In contrast, the
lowest responses include images of flowers or ponds found in open areas, which diverge
significantly from the structural and object content in the source images.

Comparison with generative methods. Single-view scenarios are often addressed
by generative methods [35–37] that employ diffusion models [19, 53]. While these
models can produce reasonable results for object-centric renderings, they struggle with
scene-level renderings from novel viewpoints. We show two LLFF examples in Figure 8
using zero 1-to-3 [35], where the left image is the input, and the right one is the output.
Images rendered with zero 1-to-3 [35] suffer from style difference. Unlike NeRF-based
approaches that reconstruct images from observed pixels, generative models synthesize
an entire image from its semantic representation but may not maintain the style.

5 Conclusion and limitation

In this paper, we introduce CaesarNeRF, a few-shot and generalizable NeRF pipeline
that combines scene-level semantic with per-pixel feature representations, aiding in ren-
dering from novel camera positions with limited reference views. We calibrate the se-
mantic representations across different input views and employ a sequential refinement
network to offer distinct semantic representations at various levels. Our method has
been extensively evaluated on a broad range of datasets, exhibiting state-of-the-art per-
formance in both generalizable and single-scene settings.

Limitations and potential negative impact. Instead of a generative approach, Cae-
sarNeRF relies on NeRF’s scheme, using input images to render the target view. This
approach restricts its ability to render parts of the scene that are not present in the ref-
erence images. CaesarNeRF may create fake images for authentication.
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