Abstract

State-of-the-art subspace clustering methods are based on convex formulations whose theoretical guarantees require the subspaces to be low-dimensional. Dual Principal Component Pursuit (DPCP) is a non-convex method that is specifically designed for learning high-dimensional subspaces, such as hyperplanes. However, existing analyses of DPCP in the multi-hyperplane case lack a precise characterization of the distribution of the data and involve quantities that are difficult to interpret. Moreover, the provable algorithm based on recursive linear programming is not efficient. In this paper, we introduce a new notion of geometric dominance, which explicitly captures the distribution of the data, and derive both geometric and probabilistic conditions under which a global solution to DPCP is a normal vector to a geometrically dominant hyperplane. We then prove that the DPCP problem for a union of hyperplanes satisfies a Riemannian regularity condition, and use this result to show that a scalable Riemannian subgradient method exhibits (local) linear convergence to the normal vector of the geometrically dominant hyperplane. Finally, we show that integrating DPCP into popular subspace clustering schemes, such as \(K \)-ensembles, leads to superior or competitive performance over the state-of-the-art in clustering hyperplanes.

1 INTRODUCTION

Subspace clustering (SC) (Vidal, 2011) assumes data points are drawn from a union of subspaces, and the goal is to estimate the subspaces and cluster the data points according to their membership. Typically, existing SC methods require the underlying subspaces to be of low-relative dimension compared to the ambient space in order to enjoy strong theoretical guarantees together with efficient implementations, which have been heavily researched in the past decade. For example, the self-expressive approaches (Elhamifar and Vidal, 2009, 2013; Liu et al., 2010; Lu et al., 2012; Vidal and Favaro, 2014; You et al., 2016a,b) assume each data point can be expressed as a sparse linear combination of other data points from the same subspace. On the other hand, clustering subspaces of high-relative dimension is less studied, with one of the most interesting cases being hyperplane clustering (HC). Many applications in computer vision and machine learning can be reduced to HC problems, such as motion segmentation (Tron and Vidal, 2007; Vidal et al., 2006, 2008), hybrid system identification (Bako, 2011; Vidal et al., 2003), and sparse component analysis (Georgiev et al., 2005; He and Cichocki, 2007; Xu et al., 2018). However, simply applying SC methods that are designed for the low-relative dimension to HC is ineffective because the theory and algorithms do not apply to a union of hyperplanes (UoH) setting.

There are several mainstream methods for HC. First, the Random Sampling and Consensus (RANSAC) (Fischler and Bolles, 1981) is a popular heuristic based on fitting one hyperplane at a time using principal component analysis (PCA) from many randomly sampled points; this process is repeating after the points identified as belonging to the previously selected hyperplanes are removed. However, it suffers from an exponential complexity as the number of hyperplanes grows. Second, Algebraic Subspace Clustering (ASC) enjoys strong theoretical guarantees for hyperplanes (Tsakiris and Vidal, 2017a,b; Vidal et al., 2005), but is not robust to outliers and is computationally expensive when the ambient dimension is high. Third, \(K \)-subspaces (KSS) (Agarwal and Mustafa, 2004; Bradley and Mangasarian, 2000) is another attractive method that alternates between assigning data points to clus-
This paper addresses all of the above challenges associated with DPCP. Specifically, the main contributions of this paper can be summarized as follows.

- We introduce a new notion of geometric dominance for determining the hyperplane that is learned by DPCP under a UoH model, which then leads to an intuitive deterministic analysis that explicitly captures the data distribution and the geometric relationships among the hyperplanes.

- We derive conditions under which the global minimizer of DPCP for a UoH is guaranteed to be a normal vector of the geometrically dominant hyperplane. Our conditions replace the geometric quantities in Tsakiris and Vidal (2017c) with tighter ones that are amenable to outliers and easier to bound in probability. This approach leads to a new probabilistic guarantee for recovering the geometrically dominant hyperplane when it has sufficiently many points relative to the other planes with a mild requirement on the total number of points (e.g., $\Omega(D^3)$ with D the dimension of the ambient space), thus significantly improving upon Lerman and Zhang (2014), which requires $\Omega(D^{18} \log D)$ points.

- We prove that the objective problem of DPCP under a UoH data model satisfies a Riemannian Regularity Condition (RRC) (Zhu et al., 2019), and then use the RRC to show that a Riemannian subgradient method (RSGM, Algorithm 1) converges linearly to a normal vector of the geometrically dominant hyperplane if properly initialized. In particular, RSGM only involves matrix-vector multiplications, which makes it more scalable than the LP or SVD-based IRLS method proposed in Tsakiris and Vidal (2017c).

- We integrate DPCP into KSS (DPCP-KSS) by using DPCP to estimate the geometrically dominant hyperplane for each cluster, and leverage an ensemble of DPCP-KSS via the EKSS (Lipor et al., 2018) and CoRe (Lane et al., 2019) frameworks. Experiments demonstrate the superiority of using DPCP-KSS (implemented with RSGM) within various schemes for clustering hyperplanes.

Related work.
Tsakiris and Vidal (2017c) have partially addressed the previous challenges of DPCP for a UoH without outliers while Lerman and Zhang (2014) analyzed ℓ_p recovery of a single subspace from a union of subspaces with UoH as a special case. Three key differences should be emphasized (see Table 1 for a summary). First, in the analysis of which hyperplane is recovered, Tsakiris and Vidal (2017c) and Lerman and Zhang (2014) introduce different notions of a “significant” or “dominant” hyperplane, which depend only on the (expected) number of points in each group. We argue that the global optimum depends not only on

Table 1: Comparison of the theory and algorithms for learning a hyperplane under a UoH model.

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lerman and Zhang (2014)</td>
<td>most significant plane (see (5))</td>
<td>LPs</td>
</tr>
<tr>
<td>Tsakiris and Vidal (2017c)</td>
<td>dominant plane (see (4))</td>
<td>IRLS</td>
</tr>
<tr>
<td>This paper</td>
<td>geometrically dominant plane (see Definition 1)</td>
<td>RSGM</td>
</tr>
</tbody>
</table>
the number of data points in each group, but also on geometric quantities related to their distribution. Currently there is no notion of geometric dominance that captures these aspects. Second, Tsakiris and Vidal (2017c) provide geometric conditions under which the global minimum is a normal to the “dominant” hyperplane, and Lerman and Zhang (2014) provide probabilistic conditions. However, neither have both types of analyses, nor do the analyses make connections to geometric dominance. Third, the provably convergent algorithm in Tsakiris and Vidal (2017c), which is based on a recursion of linear programs (LPs), is not scalable, while the recommended Iteratively Reweighted Least Squares (IRLS) (Lerman and Maunu, 2018a; Lerman et al., 2015) approach does not have a guarantee for the DPCP problem. In other words, there does not exist a scalable algorithm that ensures global convergence for learning a single hyperplane under a UoH model.

Other improvements on KSS. The theory of DPCP for a UoH is ideally matched to the subspace estimation step of KSS, where most of the points in the estimated cluster are expected to belong to a single hyperplane with the remaining points belonging to the other hyperplanes. This suggests using DPCP instead of PCA in KSS for its robustness in fitting a hyperplane. Although GGD (Maunu et al., 2019) and REAPER (Lerman et al., 2015) share similar objectives with DPCP, both are primarily designed for low-dimensional subspace recovery. For example, REAPER requires \(d < (D-1)/2 \) in theory, where \(d \) and \(D \) are the dimensions of the subspace and ambient space, respectively. In other related work, Median K-Flats (MFK) (Zhang et al., 2009) replaces the squared \(\ell_2 \) objective in KSS with an unsquared one, but it lacks competitive performance as observed by Gitlin et al. (2018). Alternatively, Gitlin et al. (2018) substituted PCA in KSS by Coherence Pursuit (CoP) (Rahmani and Atia, 2017a), but the theory requires \(d < \sqrt{D} \), thus making it unsuitable for hyperplanes.

2 BACKGROUND

We first describe the data model used in this paper. Consider the \(\ell_2 \) column-normalized dataset \(\mathbf{X} = [\mathbf{X}_I, \mathbf{X}_O, \mathbf{X}] \in \mathbb{R}^{D \times (N+M)} \), where \(\mathbf{X} = [\mathbf{x}_1, \ldots, \mathbf{x}_N] \in \mathbb{R}^{D \times N} \) are \(N \) inlier points that lie in the union of \(K \) hyperplanes \(\mathcal{H}_1, \ldots, \mathcal{H}_K \subset \mathbb{R}^D \) with unit normal vectors \(\mathbf{b}_1, \ldots, \mathbf{b}_K \), respectively, \(\mathcal{O} = [\mathbf{o}_1, \ldots, \mathbf{o}_M] \in \mathbb{R}^{D \times M} \) are \(M \) outliers that lie on the unit sphere \(S^{D-1} \in \mathbb{R}^D \), and \(\Gamma \) is an unknown permutation. We assume that for every \(k \in [K] := \{1, \ldots, K\} \), there are \(N_k \) inlier points, denoted by \(\mathbf{X}_k \subset \mathbf{X} \), that belong to \(\mathcal{H}_k \). Given this model, our goal is to estimate the underlying hyperplanes \(\{\mathcal{H}_k\} \) from \(\mathbf{X} \), as well as cluster the data points according to their nearest hyperplane.

Note that if \(\mathbf{b} \) is a normal vector to a hyperplane, it is orthogonal to all the data points within this hyperplane. Thus, we attempt to find a normal vector to one specific hyperplane by solving

\[
\min_{\mathbf{b} \in \mathbb{S}^{D-1}} f(\mathbf{b}) := \|\mathbf{X}^\top \mathbf{b}\|_2 = \sum_{k=1}^K \|\mathbf{X}_k^\top \mathbf{b}\|_2 + \|\mathcal{O}^\top \mathbf{b}\|_2
\]

which is called **Dual Principal Component Pursuit (DPCP)**. For learning a single hyperplane \(\mathcal{H}_k \), when the inliers are uniformly distributed in \(\mathcal{H}_k \cap S^{D-1} \) and the outliers are uniformly distributed in \(S^{D-1} \), the DPCP problem (1) can provably recover the true normal vector to \(\mathcal{H}_k \) provided that the number of outliers is big-O of the square of the number of inliers (Ding et al., 2019; Zhu et al., 2018a). The problem is more challenging when \(\mathbf{X} \) consists of inliers from a union of \(K \) hyperplanes. The analysis of a single hyperplane cannot be applied here by treating the data points from one hyperplane as inliers and the rest as outliers since the data distribution in other planes is far from uniform and thus violates the prior analysis.

We now introduce several geometric quantities from Zhu et al. (2018a) that characterize how well the inliers and outliers are distributed. First, to characterize the distribution of outliers, we use the maximum norm Riemannian subgradient of the function \(\frac{1}{M} \|\mathcal{O}^\top \mathbf{b}\|_1 \), which we denote by

\[
\eta_{\mathcal{O}} := \max_{\mathbf{b} \in \mathbb{S}^{D-1}} \| (I - \mathbf{b} \mathbf{b}^\top) \mathcal{O} \text{sign}(\mathcal{O}^\top \mathbf{b})\|_2 / M,
\]

where \(\text{sign}(\mathbf{a}) = a/|a| \) if \(a \neq 0 \) else 0, and \(\text{sign}(\mathbf{a}) \) denotes the application of the sign function element-wise to the vector \(\mathbf{a} \). More uniformly distributed outliers lead to smaller values of \(\eta_{\mathcal{O}} \). This follows since if \(M \rightarrow \infty \) and \(\mathcal{O} \) is well distributed, then \(\mathcal{O} \text{sign}(\mathcal{O}^\top \mathbf{b}) / M \) approaches the direction of \(\mathbf{b} \), which leads to \(\eta_{\mathcal{O}} \rightarrow 0 \) (Zhu et al., 2018a). Second, for the inlier subset \(\mathbf{X}_k \) in hyperplane \(\mathcal{H}_k \), we define

\[
\begin{align*}
\eta_{\mathbf{X}_k, \text{min}} &:= \min_{\mathbf{b} \in \mathcal{H}_k \cap \mathbb{S}^{D-1}} \|\mathbf{X}_k^\top \mathbf{b}\|_1 / N_k, \\
\eta_{\mathbf{X}_k, \text{max}} &:= \max_{\mathbf{b} \in \mathcal{H}_k \cap \mathbb{S}^{D-1}} \|\mathbf{X}_k^\top \mathbf{b}\|_1 / N_k.
\end{align*}
\]

Note that \(\eta_{\mathbf{X}_k, \text{min}} \) and \(\eta_{\mathbf{X}_k, \text{max}} \) are the **permeance statistic** defined in Lerman et al. (2015). A well-distributed \(\mathbf{X}_k \) leads to a large value of \(\eta_{\mathbf{X}_k, \text{min}} \) and small value of \(\eta_{\mathbf{X}_k, \text{max}} \) since it is difficult to find a single direction \(\mathbf{b} \) that is orthogonal to (or in line with) many points in \(\mathbf{X}_k \). Parallel to (2) and (3), we also define the following quantities that further characterize the distribution of inliers and outliers, respectively:

\[
\begin{align*}
\eta_{\mathcal{O}, \text{min}} &:= \min_{\mathbf{b} \in \mathbb{S}^{D-1}} \|\mathcal{O}^\top \mathbf{b}\|_1 / M, \\
\eta_{\mathcal{O}, \text{max}} &:= \max_{\mathbf{b} \in \mathbb{S}^{D-1}} \|\mathcal{O}^\top \mathbf{b}\|_1 / M.
\end{align*}
\]
where \(P_{\mathcal{H}_k} \) is the orthonormal projection onto \(\mathcal{H}_k \). We will see shortly that the global optimality theory based on these geometric quantities is easier to interpret and facilitates a probabilistic analysis.

3 ANALYSIS OF DPCP FOR A UNION OF HYPERPLANES

3.1 Geometrically Dominant Hyperplane

We first review the definitions of a dominant hyperplane in Lerman and Zhang (2014); Tsakiris and Vidal (2017c). The hyperplane (say \(\mathcal{H}_1 \)) with the most number of points is defined as the dominant hyperplane in Tsakiris and Vidal (2017c), i.e.,

\[
N_1 > \max_{k \geq 2} N_k. \tag{4}
\]

It is proved in Tsakiris and Vidal (2017c) that a global solution of (1) is a normal vector of \(\mathcal{H}_1 \) under certain conditions, which implicitly make use of the distribution of the data, but are deterministic in nature and difficult to interpret. On the other hand, the work of Lerman and Zhang (2014) considers a random model where inliers are sampled from \(\bigcup_{k=1}^K \mathcal{H}_k \cap S^{D-1} \) with weights \(\{\alpha_k\}_{k=1}^K \) (\(\alpha_k \) is the weight of sampling inliers in \(\mathcal{H}_k \)) and outliers are sampled from \(S^{D-1} \) with weight \(\alpha_0 \), and \(\sum_{k=0}^K \alpha_k = 1 \). Then \(\mathcal{H}_1 \) is defined as the most significant hyperplane if

\[
\alpha_1 > \sum_{k=2}^K \alpha_k. \tag{5}
\]

The number of sampled points, in expectation, is equivalent to \(N_1 > \sum_{k=2}^K N_k \). In contrast to (4) and (5), the hyperplane that we target depends on the point weights as well as the distribution and geometric relationships among the planes. We call such a plane a geometrically dominant hyperplane.

Geometrically dominant hyperplane. Recall our goal is to minimize the objective in (1). Intuitively, the outlier term \(\| O^T b \|_1 \) should be nearly constant for well-distributed outliers, so that the minimizer of (1) is determined by the relative importance of the inlier terms \(\| X_k^T b \|_1 \). We also expect the relative orientation of the underlying hyperplanes to play an important role in determining the solution to (1). For example, in the case that data are uniformly sampled and each plane has the same point weights, the solution of (1) has a bias towards the normals of the planes that are close to each other. Noting that the geometric relationships between \(\mathcal{H}_k \)'s are determined by the principal angles between the \(b_k \)'s, we define \(\theta_{kl} \in [0, \pi/2] \) to be the principal angle between \(b_k \) and \(b_l \). By analyzing the first-order necessary condition for problem (1), we define \(\zeta_k \) that measures the relative dominance for \(X_k \) and considers the integrated information of point weights, data distribution, and relative orientation of the hyperplanes:

\[
\zeta_k := \frac{N_k c X_{k, \min} \sqrt{1^T W_{(k,k)}^\max 1 + \sum_{\ell \neq k} N_{\ell} c X_{\ell} + M \eta O + D}}{N_k c X_{k, \max}}, \tag{6}
\]

where \(W_{(k,k)}^\max \in \mathbb{R}^{K \times K} \) whose \((k,\ell)\)th entry is \(N_k c X_{k, \max} N_{\ell} c X_{\ell, \max} \cos(\theta_{k\ell}) \) and represents the joint importance of \(X_k \) and \(X_\ell \) weighted by \(\cos(\theta_{k\ell}) \). \(W_{(k,k)}^\max \) is the principal submatrix obtained by deleting the \(k \)-th row and \(k \)-th column of \(W_{(k,k)}^\max \), and \(1 \) is the vector of all 1's. Noting that: (i) the numerator \(N_k c X_{k, \min} \) of (6) represents the contribution from \(X_k \); (ii) the term \(1^T W_{(k,k)}^\max 1 \) in the denominator counts the sum of the entries in \(W_{(k,k)}^\max \), capturing the total contributions from \(X_\ell \)’s \(\ell \neq k \); and (iii) the last term \(\sum_{\ell \neq k} N_{\ell} c X_{\ell} + M \eta O + D \) is typically small compared with the former two terms. Thus, overall \(\zeta_k \) measures the relative dominance of \(X_k \) over \(X_\ell \)’s \(\ell \neq k \). We see that larger relative dominance of \(X_k \) (i.e. larger \(\zeta_k \)) results from better distributed data points, larger \(N_k \) relative to \(M \) and \(N_{\ell} \) for \(\ell \neq k \), and better separation of the other hyperplanes (large \(\theta_{ij}, i, j \neq k, i \neq j \)).

Definition 1. With \(\zeta_k \) in (6), we say that \(\mathcal{H}_k \) is a geometrically dominant hyperplane if \(\zeta_k \geq \zeta_\ell, \forall \ell \).

The notion of geometric dominance makes the deterministic analysis (Sec. 3.2) tighter, and allows a probabilistic analysis (Sec. 3.3) that is easier to be satisfied with only mild number of sampled points

Proposition 1. There is at most one \(k \in [K] \) such that \(\zeta_k > 1 \), and then \(\zeta_\ell < 1 \) for all \(\ell \in [K]\backslash k \).

It follows from Proposition 1 that if \(\zeta_k > 1 \) then \(\mathcal{H}_k \) is the unique geometrically dominant hyperplane. For the rest of the analysis, we assume that there always exists \(k \in [K] \) such that \(\zeta_k > 1 \); the scenario that such a geometrically dominant hyperplane does not exist is left for future work. We note that this assumption ensures a simple landscape of the non-convex DPCP problem (1) that allows us to show that under certain conditions the global minimizers of (1) are guaranteed to be normal vectors of the geometrically dominant hyperplane (Theorem 1). The assumption may be stronger than needed in theory since it excludes the possibility that normals of the other hyperplanes are global solutions to (1), which are also of our interest. Related works make similar assumptions—Tsakiris and Vidal (2017c)

Assuming points in \(X_\ell \) and \(O \) are uniformly sampled from \(S^{D-1} \cap \mathcal{H}_k \) and \(S^{D-1} \) respectively, both \(N_k c X_{k, \max} \) and \(N_k c X_{k, \min} \) scale as \(O(N_k) \), while \(N_{\ell} c X_{\ell} \) scales as \(O(\sqrt{N_{\ell}}) \) and \(M \eta O \) scales as \(O(\sqrt{M}) \) (Zhu et al., 2018a).

In fact, Tsakiris and Vidal (2017c, Proposition 5) shows that for three equi-angular hyperplanes, global minimizers of (1) can be normal vectors of any of the planes when they are well-separated and the data points are well-distributed.
Without loss of generality, we assume $G_1 > 1$, i.e., that H_1 is the geometrically dominant hyperplane. We first characterize critical points of (1) with respect to the geometrically dominant hyperplane H_1.

Lemma 1. Any critical point b^* of (1) must belong to $\{\pm b_1\}$ or have a principal angle θ from b_1 satisfying $\theta \geq \arcsin(\sqrt{1 - (1/G_1)^2})$.

Intuitively, Lemma 1 suggests that any critical point of (1) is either a normal vector of H_1, or very close to H_1 (i.e., within a region defined by the geometric dominance level of \mathcal{X}_1). As the relative dominance of \mathcal{X}_1 increases (larger G_1), the location of b^* becomes more restricted. In particular, Lemma 1 allows us to conclude that b_1 is the single (up to direction) critical point inside of the cone $C := \{y \in \mathbb{R}^d : |y^\top b_1| > 1/G_1, ||y||_2 = 1\}$ centered around $\pm b_1$.

The above observation ensures that every normal in the set $\{\pm b_2, \ldots, \pm b_K\}$ that lies inside of C is not a critical point (see Figure 1). We will later see how this facilitates the convergence of an algorithm to $\{\pm b_1\}$ when it is initialized inside C because b_1 (up to direction) is the only possible solution within the region.

Lemma 1 helps us understand global solutions of (1). To show that any global minimizer b^* satisfies $b^* \in \{\pm b_1\}$, we need to ensure that every critical point close to H_1 is not a global solution. Inspired by the analysis in Tsakiris and Vidal (2017c), we define

$$\gamma_k := \frac{N_k c_{\mathcal{X}_k, \text{min}}}{\sum_{\ell \neq k} N_{\ell} c_{\mathcal{X}_{\ell, \text{max}}} \sin(\theta_{k\ell}) - \sqrt{\sum_{\ell=2}^{K-1} \lambda_{\ell}(W_{\min}^{\text{max}})}} + \Delta,$$

where $\Delta := M(c_{\mathcal{O}, \text{max}} - c_{\mathcal{O}, \text{min}})$.

Here, W_{\min}^{max} is the same as W^{max} (see (6)) by replacing $c_{\mathcal{X}_k, \text{max}} c_{\mathcal{X}_k, \text{max}}$ with $c_{\mathcal{X}_k, \text{min}} c_{\mathcal{X}_k, \text{min}}$, and $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$ are the eigenvalues of an n-by-n matrix A. In fact, we can show every global solution of (1) is not far from $\{\pm b_1\}$ in the sense that its principal angle θ from b_1 satisfies $\theta \leq \arcsin(1/\gamma_1)$. Combining this fact with Lemma 1 establishes our main theoretical result.

Theorem 1. Any global solution of (1) is a normal to the geometrically dominant hyperplane H_1 if

$$(1/\gamma_1)^2 + (1/\gamma_1)^2 < 1.$$
3.3 Probabilistic Analysis of DPCP for a UoH

Since the geometric quantities have corresponding concentrations in probability (Zhu et al., 2018a), the new approach leads to the following probabilistic guarantee.

Theorem 2. Consider a random spherical model where the M columns of \mathcal{O} are drawn uniformly from the sphere S^{D-1}, and the N_k columns of \mathcal{X}_k are drawn uniformly from $S^{D-1} \cap \mathcal{H}_k$ for $k \in [K]$, where \mathcal{H}_k is a hyperplane in \mathbb{R}^D. Then the probability that any global solution of (1) is a normal vector of \mathcal{H}_1 is at least $1 - 2(K + 1)e^{-t^2/2}$, where $t > 0$ satisfies

$$C_0 \sum_{k \neq 1} N_k + \left(C_1 \sqrt{D \log(D)} + \frac{3t}{2} \right) \sum_{k \neq 1} \sqrt{N_k} \quad (9)$$

and

$$C_1 \cdot C_2 \text{ are universal constants that are independent of } K, \{N_k\}, M, D \text{ and } t,$$

$$C_0 := \frac{(D - 3)!!}{(D - 2)!!} \left\{ \begin{array}{ll} 3 & \text{if } D \text{ is even,} \\ 1 & \text{if } D \text{ is odd.} \end{array} \right. \quad (10)$$

Note that $C_0 \in \left[\sqrt{\frac{2}{\pi(D-1)}}, \sqrt{\frac{1}{D-1}} \right]$ (Zhu et al., 2018b, footnote 9) is a constant for fixed D. As the number of inliers from the hyperplanes goes to infinity and the other parameters are fixed, (9) roughly requires $\sum_{k \neq 1} N_k < N_1$, which coincides with (5) of Lerman and Zhang (2014) (in expectation). Also, as the number of inliers goes to infinity, (9) implies that the DPCP approach can tolerate $M = O((N_1 - \sum_{k \neq 1} N_k)/D^2)$ outliers, which generalizes the result in Zhu et al. (2018a) for a single subspace.

A similar probabilistic result is provided in Lerman and Zhang (2014, Theorem 1.1) but for a different generative model where the number of points sampled in each hyperplane is not fixed in advance, as opposed to M and $\{N_k\}$, here, but is controlled by the sampling weights $\{\alpha_k\}_{k=0}^K$ (see Sec. 3.1). With this difference in mind, we now compare Lerman and Zhang (2014, Theorem 1.1) with (9). Towards that goal, dividing both sides of (9) by the total number of data points $N + M$, and viewing N/M as α_0 and $N_k/N + M$ as α_k, gives

$$\alpha_1 > \sum_{k=0}^K \alpha_k + \frac{3\sqrt{D} \cdot t + \rho(D)}{\sqrt{N + M}} \sum_{k=0}^K \alpha_k, \quad (11)$$

where $\rho(D) := \sqrt{2D \log D} \max(C_1, C_2)$. Our result and Lerman and Zhang (2014, Theorem 1.1) require a similar condition on α_k to guarantee that any global solution of (1) is a normal vector of \mathcal{H}_1 with certain probability. On one hand, (11) requires α_1 to be larger than $\sum_{k=2}^K \alpha_k$ by a positive amount (which goes to 0 if the total number of points goes to infinity), which is slightly stronger than (5) in Lerman and Zhang (2014). On the other hand, Lerman and Zhang (2014, Theorem 1.1) only ensures a probability of $1 - C_3 \exp(-N/M)$, where $C_3 = O(D(D-1)/2 + D^{(D-1)})$ and $C_4 = O(D^{10})$ (assuming the other parameters such as K are fixed), thus not requiring to sample $O(D^{18} \log D)$ points to make the probability overwhelming (e.g., probability of $1 - O(\exp(-D))$ if $N + M = O(D^{10} \log D)$). For comparison, by taking $t = \sqrt{\frac{N+M}{D^2}}$, Theorem 2 now requires α_1 to be larger than $\sum_{k=2}^K \alpha_k$ by a small amount of $\frac{3\sqrt{D} \cdot t + \rho(D)}{\sqrt{N + M}} \sum_{k=0}^K \alpha_k$ and guarantees with probability $1 - 2(K + 1) \exp(-N/M)$, which only requires a total sampling of $O(D^{14})$ points to make the probability overwhelming (e.g., probability of $1 - O(\exp(-D))$ if $N + M = O(D^{4})$), which is much smaller than the $O(D^{18} \log D)$ needed in Lerman and Zhang (2014).

3.4 Analysis of Projected Riemannian Subgradient Descent for a UoH

We have shown that the non-convex DPCP problem (1) is effective in robustly recovering a specific hyperplane for a UoH. The work of Tsakiris and Vidal (2017c) proposed to solve (1) by either an LP-based algorithm that involves a sequence of convex optimization problems thus is computationally expensive, or an IRLS algorithm that requires doing an SVD in each iteration and lacks a convergence guarantee. Here, we will utilize the efficient Riemannian subgradient method (RSGM) stated as Algorithm 1, and focus on its convergence to the geometrically dominant hyperplane that solves (1).

Algorithm 1 Riemannian Subgradient Method

1: **Initialization:** $\hat{b}_0 \in S^{D-1}$, μ_0, and $\beta \in (0, 1)$
2: for $t = 0, 1, 2, \cdots$ do
3: Update the step size: $\mu_t = \mu_0 \beta^t$
4: Compute a Riemannian subgradient:
$$G(\hat{b}_t) \leftarrow (1 - \beta \mu_t) \hat{X} \text{sign}(\hat{X}^\top \hat{b}_t).$$
5: Update the iterate as:
$$\tilde{b}_{t+1} \leftarrow \tilde{b}_t - \mu_t G(\hat{b}_t),$$
$$\tilde{b}_{t+1} \leftarrow \tilde{b}_{t+1}/\|\tilde{b}_{t+1}\|_2.$$
6: end for

Each iterate of the RSGM computes a Riemannian subgradient $(1 - \beta \mu_t) \hat{X} \text{sign}(\hat{X}^\top \hat{b}_t)$, which is computationally efficient compared with solving an LP. Moreover, RSGM has been proved to converge to a global solution at a linear rate with appropriate initialization in the single subspace case (Li et al., 2019; Zhu et al., 2019). Here, we extend this analysis to the UoH model and prove a linear convergence rate. Towards that goal, we measure the distance between any vector $\mathbf{b} \in S^{D-1}$ and our target solution set $\{\pm \mathbf{b}_1\}$ by
Figure 2: Linear convergence to \mathcal{H}_1 for different β in Algorithm 1. Here $D = 9$, $K = 3$, $N = 1200$ ($N_3 = 0.8N_2 = 0.8^2N_1$), and outlier ratio $\frac{M}{M+N} = 0.3$.

\[\text{dist}(\mathbf{b}, \{\pm \mathbf{b}_1\}) := \min(||\mathbf{b} - \mathbf{b}_1||_2, ||\mathbf{b} + \mathbf{b}_1||_2). \]

The next result establishes the Riemannian regularity condition (RRC) (Zhu et al., 2019) for (1), which we use to obtain a linear convergence rate.

Lemma 2 (Riemannian regularity condition (RRC)). For any $\epsilon \in (0, \sqrt{2(1-1/\zeta_1)})$ and $\tau = \frac{\sqrt{2}}{\epsilon} N_1 c \sqrt{\epsilon}$, the DPCP problem (1) satisfies the following $(\tau, \epsilon, \beta_1)$-RRC: for every $\mathbf{b} \in S^{D-1}$ satisfying $\text{dist}(\mathbf{b}, \{\pm \mathbf{b}_1\}) \leq \epsilon$, we have

\[
\begin{align*}
(\mathbf{b}^\top \mathbf{b}_1) \mathbf{b}_1 - b - (1 - \mathbf{b} \mathbf{b}_1^\top) \mathbf{X} \text{sign}(\mathbf{b}^\top \mathbf{b}) & \geq \tau \text{dist}(\mathbf{b}, \{\pm \mathbf{b}_1\}).
\end{align*}
\]

In words, (12) guarantees that when \mathbf{b} is close to a target solution $\pm \mathbf{b}_1$ (a normal vector of the geometrically dominant hyperplane \mathcal{H}_1), the negative Riemannian subgradient points towards the target solution. The choice of ϵ and τ in Lemma 2 depends on the geometric dominance level of \mathbf{X}_1. A larger relative dominance of \mathbf{X}_1 (larger ζ_1) leads to larger ϵ (i.e., a larger initialization region) and larger τ (i.e., the negative Riemannian subgradient points closer to $\pm \mathbf{b}_1$). Using the RRC, we now apply Zhu et al. (2019, Theorem 1) to obtain a convergence guarantee for RSGM.

Theorem 3. Let $\{\hat{\mathbf{b}}_k\}$ be the sequence generated by Algorithm 1 for solving problem (1) with initialization $\hat{\mathbf{b}}_0 = \text{arccos}(\beta \mathbf{b}_1^\top) < \text{arccos}(1/\zeta_1)$ and step size $\mu_k = \mu_0 \beta^k$ such that

\[0 < \mu_0 \leq \frac{\tau_4}{2\epsilon^2} \quad \text{and} \quad 1 > \beta \geq \frac{\sqrt{1 - 2 \tau_0 \epsilon}}{\epsilon} + \frac{\mu_0 \xi}{\epsilon^2}. \]

where $\epsilon = \sqrt{2(1 - \cos(\tilde{\theta}_0))}$,

\[\tau = (\sqrt{2}/2)N_1 c \min(\cos(\tilde{\theta}_0) - 1/\zeta_1), \]

and

\[\xi = \sqrt{1^\top W \max \mathbf{1} + \sum_{k=1}^{K} N_k \eta_k \mathbf{x}_k + M \eta \mathbf{c} + D}. \]

Then the principal angle $\tilde{\theta}_t$ between $\hat{\mathbf{b}}_0$ and \mathbf{b}_1 decays at a linear rate: $\sin(\tilde{\theta}_t) \leq \epsilon \cdot \beta^t$ for all $t \geq 0$.

Theorem 3 ensures that a properly initialized Algorithm 1 converges linearly to a normal vector of the geometrically dominant hyperplane \mathcal{H}_1, i.e., $\pm \mathbf{b}_1$, provided a certain diminishing step size is used. Note that Theorem 1 implies that $\pm \mathbf{b}_1$ are global solutions to (1) when condition (8) is satisfied. The initialization requirement coincides with Lemma 1, which states that any critical point inside the cone $C = \{\mathbf{y} \in \mathbb{R}^D : |\mathbf{y}^\top \mathbf{b}_1| > 1/\zeta_1, |\mathbf{y}|^2 = 1\}$ must be normal vectors of \mathcal{H}_1 (see Figure 1). Note that β is crucial to the convergence properties of Algorithm 1: convergence may fail if β is too small, and convergence may be slow when β is too large. This is illustrated in Figure 2 for data sampled from the random model of Theorem 2, the initial step size is $\mu_0 = 0.01$, and a spectral initialization is used (the bottom eigenvectors of $\mathbf{X}^\top \mathbf{X}$, which were shown to be appropriate in practice (Zhu et al., 2019)).

Computational complexity. Let T be the number of iterations, and $L := N + M$ be the total number of points. The computational complexity of RSGM is $O(TLD)$, which is preferable over the SVD-based IRLS solver whose complexity is $O(TLD^2)$, especially when the ambient dimension D is large.

4 HYPERPLANE CLUSTERING WITH DPCP

Recall that KSS alternates between assigning data points to clusters and fitting a hyperplane to each cluster. The previous discussion concentrated on the theory and algorithms for solving the DPCP problem (1) for a UoH, showing it recovers the geometrically dominant hyperplane. Inspired by the fact that condition (9) in Theorem 2 is likely to hold in the subspace estimation step of KSS (since we expect most of the points in the estimated cluster to belong to a single hyperplane), we use a family of KSS variants for hyperplane clustering. The better performance of the KSS approach over the sequential use of RANSAC was observed in Tsakiris and Vidal (2017c) where the DPCP problem was solved by IRLS. Aside from the standard KSS, we also consider the following two improved variants.
Ensemble KSS (EKSS). The performance of KSS is sensitive to its initialization because the problem is non-convex. A practical approach is to repeat the process for multiple random initializations and then pick the best one, or combine the results together in a certain way. The Ensemble KSS (EKSS) (Lipor et al., 2018) constructs an affinity matrix whose \((i,j)\)th entry is the number of times the \(i\)th and \(j\)th points are clustered together, and then applies spectral clustering to obtain clustering results.

Cooperative Re-initialization (CoRe) KSS. The Cooperative Re-initialization (CoRe) (Lane et al., 2019) framework optimizes a group of clustering results (replicas) by greedily swapping clusters between them to improve the overall quality. Both EKSS and CoRe expect the clustering in each replica to be partially correct, and that the same pattern of errors will not be made by all replicas. CoRe is capable of identifying bad clusters in a replica and swapping them with better alternatives by monitoring the change in the objective value, and hence it is observed to be more efficient than EKSS.

Since the above variants of KSS use PCA to fit a hyperplane to a cluster, we denote them as PCA-KSS, PCA-EKSS, and PCA-CoRe-KSS. To improve their performance, we replace PCA by our DPCP approach with RSGM (Algorithm 1) and denote these KSS variants by DPCP-KSS, DPCP-EKSS, and DPCP-CoRe-KSS. We also use the CoP (Rahmani and Atia, 2017a) to fit the hyperplane for each cluster, resulting in the three KSS variants CoP-KSS (Gitlin et al., 2018), CoP-EKSS (Lipor et al., 2018), and CoP-CoRe-KSS.

Synthetic Experiments. The data are generated based on the random model in Theorem 2. All results are obtained on a 64-bit machine with 2.6GHz Intel Core i7 CPU. We first test the effect of using PCA, DPCP, and CoP in KSS. The DPCP approach is implemented with RSGM (Algorithm 1), where the initial step size \(\mu_0\) is determined by using a backtracking line search during the first iteration and the diminishing factor \(\beta\) is fixed to be 0.9. Figure 3 shows the mean hyperplane clustering accuracy (over 100 independent experiments) versus iterations, with all methods using the same initialization. DPCP-KSS outperforms the others on the configuration, with average running times for DPCP-KSS, CoP-KSS, and PCA-KSS of 0.99s, 2.11s, and 0.20s, respectively.

Next, we compare the performance of the methods discussed above with other state-of-the-art subspace clustering algorithms that include MKF (Zhang et al., 2009), SCC (Chen and Lerman, 2009), SSC-ADMM (Elhamifar and Vidal, 2013), EnSC (You et al., 2016a), and SSC-OMP (You et al., 2016b). The test\(^4\) uses \(D = 4, 9\), \(K = 2, 3, 4, 5\), \(N = 50K D\) (each plane has the same number of points so that \(N_k = 50D\)), and \(\frac{M}{MN} = 0.3\). Since the KSS-style methods (without ensemble) are sensitive to initialization, we run them 10 times with random initializations until convergence (tolerance of 0.001) or 100 iterations is reached, and then select the best (i.e., the one with the lowest objective value). The CoRe methods operate directly on these 10 replicas to return an improved clustering result by aggregating the knowledge. For the EKSS-like methods, in each replica we run the KSS-style methods for only 10 iterations but build the affinity matrix based on 1000 such replicas, which is suggested in Lipor et al. (2018). Table 2 reports the mean clustering accuracy of the methods on 50 independent instances with the highest two scores in each column given in bold.

One can see that the SC methods EnSC, SSC-ADMM, and SSC-OMP, which are designed for the low-relative dimension setting, are among the least competitive for clustering hyperplanes. Also, MKF and SCC do not perform well. Among the other methods, we observe that within each scheme, algorithms that involve DPCP

<table>
<thead>
<tr>
<th></th>
<th>(D = 4)</th>
<th>(D = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K = 2)</td>
<td>(K = 3)</td>
</tr>
<tr>
<td>MKF</td>
<td>0.7937</td>
<td>0.6263</td>
</tr>
<tr>
<td>SCC</td>
<td>0.9445</td>
<td>0.9209</td>
</tr>
<tr>
<td>EnSC</td>
<td>0.7011</td>
<td>0.4912</td>
</tr>
<tr>
<td>SSC-ADMM</td>
<td>0.6801</td>
<td>0.4810</td>
</tr>
<tr>
<td>SSC-OMP</td>
<td>0.5707</td>
<td>0.4134</td>
</tr>
<tr>
<td>DPCP-KSS</td>
<td>0.9834</td>
<td>0.9463</td>
</tr>
<tr>
<td>CoP-KSS</td>
<td>0.9614</td>
<td>0.8747</td>
</tr>
<tr>
<td>PCA-KSS</td>
<td>0.9601</td>
<td>0.8623</td>
</tr>
<tr>
<td>DPCP-EKSS</td>
<td>0.9889</td>
<td>0.8807</td>
</tr>
<tr>
<td>CoP-EKSS</td>
<td>0.8278</td>
<td>0.8393</td>
</tr>
<tr>
<td>PCA-EKSS</td>
<td>0.8278</td>
<td>0.8274</td>
</tr>
<tr>
<td>DPCP-CoRe-KSS</td>
<td>0.9832</td>
<td>0.9715</td>
</tr>
<tr>
<td>CoP-CoRe-KSS</td>
<td>0.9612</td>
<td>0.8902</td>
</tr>
<tr>
<td>PCA-CoRe-KSS</td>
<td>0.9603</td>
<td>0.8981</td>
</tr>
</tbody>
</table>

\(^4\)The ambient dimension \(D\) for the synthetic experiments follows Tsakiris and Vidal (2017c).
Table 3: Mean clustering error for KSS variants with different backbones on 89 annotated images of NYUdepthV2.

<table>
<thead>
<tr>
<th>Method</th>
<th>KSS</th>
<th>CoRe-KSS</th>
<th>EKSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPCP</td>
<td>10.2%</td>
<td>9.3%</td>
<td>8.0%</td>
</tr>
<tr>
<td>PCA</td>
<td>12.4%</td>
<td>11.7%</td>
<td>10.8%</td>
</tr>
<tr>
<td>CoP</td>
<td>11.0%</td>
<td>10.8%</td>
<td>13.8%</td>
</tr>
</tbody>
</table>

(implemented by RSGM in Algorithm 1) almost always perform the best. As a result, in each column the best method is the one that uses DPCP as the internal solver for identifying the dominant hyperplane in a cluster. We made the conservative choice of fixing $\beta = 0.9$ in RSGM, which empirically works well but additional tuning for β would further improve performance. We find that with as little as 10 replicas, the methods built on the CoRe framework perform very well. We believe this is because CoRe is able to correct bad cluster estimates by swapping with other estimates.

Real Experiments. We further explore the performance of DPCP in hyperplane clustering using the real dataset NYUdepthV2 (Nathan Silberman and Fergus, 2012), which contains indoor RGB images of size $480 \times 640 \times 3$ together with depth information for each pixel. We use 89 annotated images from Tsakiris and Vidal (2017c), each of which can be transformed to 307,200 3D points and has dominant hyperplanes such as floors, walls and so on. For computational reasons, we perform superpixel representation where each image is segmented to about 1000 superpixels and the set of pixels corresponding to each superpixel is substituted by their median depth. Moreover, since the planes associated with an indoor scene are affine in \mathbb{R}^3, we use homogeneous coordinates by adding 1 at the fourth coordinate and normalize it to unit length in \mathbb{R}^4. Finally, since different superpixels represent different numbers of underlying pixels, we assign a weight to each superpixel according to its size.

We now compare the KSS variants with different backbones, namely PCA, CoP and DPCP, in clustering hyperplanes on 89 annotated images of NYUdepthV2. The parametric setting for each method is the same as for the synthetic experiments. Note that here we ignore the other general subspace clustering algorithms discussed in the synthetic experiments since they have been shown less competitive for the hyperplane clustering task (see Table 2). We first show in Table 3 the averaged clustering error for the KSS variants applied to the real data. One can see that a similar phenomenon appears as in the synthetic experiments, namely that the algorithm achieving the lowest mean clustering error is the one using DPCP as the internal solver for estimating the dominant hyperplane within each KSS framework. On the other hand, the KSS method is generally not comparable with CoRe-KSS or EKSS in this test. Finally, in Figure 4 we give visual comparisons of various approaches on clustering four hyperplanes from a 3D point cloud of NYUdepthV2.

5 CONCLUSIONS

We considered the Dual Principal Component Pursuit (DPCP) for learning a union of hyperplanes (UoH). We provided a new geometric characterization as well as an interpretable probabilistic analysis on global minimizers of DPCP, which suggests that the solution is a normal vector to the geometrically dominant hyperplane. Moreover, we established the convergence guarantee for a scalable projected Riemannian subgradient method for solving DPCP for a UoH. By integrating DPCP into KSS (DPCP-KSS), and utilizing an ensemble of DPCP-KSS via EKSS or CoRe, we were able to achieve state-of-the-art performance in hyperplane clustering.

One could try to extend the analytical framework to a union of high dimensional subspaces, but the analysis would be significantly more complex since the geometry between the subspaces is no longer easily characterized by the principal angle between normal vectors. This topic will be the subject of future work.
Acknowledgements

This research is supported in part by NSF grant 1704458, 2008460 and ShanghaiTech grant 2017F0203-000-16. Tianyu Ding would like to thank Yunchen Yang and Tianjiao Ding for fruitful discussions and help with the real experiments.

References

