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Abstract

State-of-the-art subspace clustering methods
are based on convex formulations whose the-
oretical guarantees require the subspaces to
be low-dimensional. Dual Principal Compo-
nent Pursuit (DPCP) is a non-convex method
that is specifically designed for learning high-
dimensional subspaces, such as hyperplanes.
However, existing analyses of DPCP in the
multi-hyperplane case lack a precise charac-
terization of the distribution of the data and
involve quantities that are difficult to inter-
pret. Moreover, the provable algorithm based
on recursive linear programming is not ef-
ficient. In this paper, we introduce a new
notion of geometric dominance, which explic-
itly captures the distribution of the data, and
derive both geometric and probabilistic condi-
tions under which a global solution to DPCP
is a normal vector to a geometrically dom-
inant hyperplane. We then prove that the
DPCP problem for a union of hyperplanes
satisfies a Riemannian regularity condition,
and use this result to show that a scalable Rie-
mannian subgradient method exhibits (local)
linear convergence to the normal vector of
the geometrically dominant hyperplane. Fi-
nally, we show that integrating DPCP into
popular subspace clustering schemes, such as
K-ensembles, leads to superior or competi-
tive performance over the state-of-the-art in
clustering hyperplanes.

1 INTRODUCTION

Subspace clustering (SC) (Vidal, 2011) assumes data
points are drawn from a union of subspaces, and the
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goal is to estimate the subspaces and cluster the data
points according to their membership. Typically, ex-
isting SC methods require the underlying subspaces to
be of low-relative dimension compared to the ambient
space in order to enjoy strong theoretical guarantees to-
gether with efficient implementations, which have been
heavily researched in the past decade. For example,
the self-expressive approaches (Elhamifar and Vidal,
2009, 2013; Liu et al., 2010; Lu et al., 2012; Vidal and
Favaro, 2014; You et al., 2016a,b) assume each data
point can be expressed as a sparse linear combination
of other data points from the same subspace.

On the other hand, clustering subspaces of high-relative
dimension is less studied, with one of the most inter-
esting cases being hyperplane clustering (HC). Many
applications in computer vision and machine learning
can be reduced to HC problems, such as motion segmen-
tation (Tron and Vidal, 2007; Vidal et al., 2006, 2008),
hybrid system identification (Bako, 2011; Vidal et al.,
2003), and sparse component analysis (Georgiev et al.,
2005; He and Cichocki, 2007; Xu et al., 2018). How-
ever, simply applying SC methods that are designed for
the low-relative dimension to HC is ineffective because
the theory and algorithms do not apply to a union of
hyperplanes (UoH) setting.

There are several mainstream methods for HC. First,
the Random Sampling and Consensus (RANSAC) (Fis-
chler and Bolles, 1981) is a popular heuristic based
on fitting one hyperplane at a time using principal
component analysis (PCA) from many randomly sam-
pled points; this process is repeating after the points
identified as belonging to the previously selected hy-
perplanes are removed. However, it suffers from an
exponential complexity as the number of hyperplanes
grows. Second, Algebraic Subspace Clustering (ASC)
enjoys strong theoretical guarantees for hyperplanes
(Tsakiris and Vidal, 2017a,b; Vidal et al., 2005), but
is not robust to outliers and is computationally expen-
sive when the ambient dimension is high. Third, K-
subspaces (KSS) (Agarwal and Mustafa, 2004; Bradley
and Mangasarian, 2000) is another attractive method
that alternates between assigning data points to clus-
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Table 1: Comparison of the theory and algorithms for learning a hyperplane under a UoH model.

Theory Algorithms
Which hyperplane
does it recover?

Handle
outliers

Analytical
approach

Convergence
guarantee

Scale
well?

Lerman and Zhang (2014) most significant plane
(see (5)) 3 probabilistic – – –

Tsakiris and Vidal (2017c) dominant plane
(see (4)) 7 geometric LPs 3 7

IRLS 7 3

This paper geometrically dominant plane
(see Definition 1) 3 probabilistic

+ geometric RSGM 3 3

ters and estimating a subspace for each cluster using
PCA. KSS is scalable in practice, but it can easily
get stuck near a local minimum due to its non-convex
nature and it is not robust to outliers. The subopti-
mality issue can be addressed by leveraging ensembles
of KSS (Lane et al., 2019; Lipor et al., 2018), while the
lack of robustness stems from the fact that the squared
`2 loss used in PCA is incapable of handling outliers.

In this paper, we analyze Dual Principal Component
Pursuit (DPCP) (Tsakiris and Vidal, 2018) for learning
a hyperplane from data under a UoH model, and to
show the superiority of embedding DPCP into pop-
ular schemes (e.g., KSS) for clustering hyperplanes.
It is known that DPCP can robustly learn a single
hyperplane and tolerate outliers on the order of the
square of the number of inliers (Ding et al., 2019; Zhu
et al., 2018a) by computing a basis for the orthogonal
complement of the subspace, which itself is computed
by solving a non-convex `1 optimization problem on
the sphere. It is not known, however, whether DPCP
can learn a normal to one of the hyperplanes in the
presence of both structured and regular outliers.1 In
fact, several related questions remain unanswered. Un-
der what conditions is a global optimum of the DPCP
problem a normal to one of the hyperplanes? When the
global optimum is a normal, which hyperplane is it a
normal to? Can the convergence of some optimization
algorithm to a global solution to the non-convex DPCP
problem under the UoH data model be guaranteed?

This paper addresses all of the above challenges associ-
ated with DPCP. Specifically, the main contributions
of this paper can be summarized as follows.

• We introduce a new notion of geometric dominance
for determining the hyperplane that is learned by
DPCP under a UoH model, which then leads to an in-
tuitive deterministic analysis that explicitly captures
the data distribution and the geometric relationships
among the hyperplanes.

1In learning a single hyperplane from data under a UoH
model, the structured outliers are the data points that
come from the remaining hyperplanes; regular outliers are
uniformly distributed in the ambient space. Throughout
this paper, unless stated otherwise, outliers refer to the
regular kind, and a UoH model contains regular outliers.

• We derive conditions under which the global mini-
mizer of DPCP for a UoH is guaranteed to be a nor-
mal vector of the geometrically dominant hyperplane.
Our conditions replace the geometric quantities in
Tsakiris and Vidal (2017c) with tighter ones that are
amenable to outliers and easier to bound in proba-
bility. This approach leads to a new probabilistic
guarantee for recovering the geometrically dominant
hyperplane when it has sufficiently many points rela-
tive to the other planes with a mild requirement on
the total number of points (e.g., Ω(D3) with D the
dimension of the ambient space), thus significantly
improving upon Lerman and Zhang (2014), which
requires Ω(D18 logD) points.

• We prove that the objective problem of DPCP under
a UoH data model satisfies a Riemannian Regularity
Condition (RRC) (Zhu et al., 2019), and then use the
RRC to show that a Riemannian subgradient method
(RSGM, Algorithm 1) converges linearly to a normal
vector of the geometrically dominant hyperplane if
properly initialized. In particular, RSGM only in-
volves matrix-vector multiplications, which makes
it more scalable than the LP or SVD-based IRLS
method proposed in Tsakiris and Vidal (2017c).

• We integrate DPCP into KSS (DPCP-KSS) by using
DPCP to estimate the geometrically dominant hy-
perplane for each cluster, and leverage an ensemble
of DPCP-KSS via the EKSS (Lipor et al., 2018) and
CoRe (Lane et al., 2019) frameworks. Experiments
demonstrate the superiority of using DPCP-KSS (im-
plemented with RSGM) within various schemes for
clustering hyperplanes.

Related work. Tsakiris and Vidal (2017c) have par-
tially addressed the previous challenges of DPCP for a
UoH without outliers while Lerman and Zhang (2014)
analyzed `p recovery of a single subspace from a union
of subspaces with UoH as a special case. Three key
differences should be emphasized (see Table 1 for a
summary). First, in the analysis of which hyperplane
is recovered, Tsakiris and Vidal (2017c) and Lerman
and Zhang (2014) introduce different notions of a “sig-
nificant” or “dominant” hyperplane, which depend only
on the (expected) number of points in each group. We
argue that the global optimum depends not only on



Tianyu Ding, Zhihui Zhu, Manolis Tsakiris, René Vidal, Daniel Robinson

the number of data points in each group, but also on
geometric quantities related to their distribution. Cur-
rently there is no notion of geometric dominance that
captures these aspects. Second, Tsakiris and Vidal
(2017c) provide geometric conditions under which the
global minimum is a normal to the “dominant” hyper-
plane, and Lerman and Zhang (2014) provide proba-
bilistic conditions. However, neither have both types
of analyses, nor do the analyses make connections to
geometric dominance. Third, the provably convergent
algorithm in Tsakiris and Vidal (2017c), which is based
on a recursion of linear programs (LPs), is not scalable,
while the recommended Iteratively Reweighted Least
Squares (IRLS) (Lerman and Maunu, 2018a; Lerman
et al., 2015) approach does not have a guarantee for the
DPCP problem. In other words, there does not exist a
scalable algorithm that ensures global convergence for
learning a single hyperplane under a UoH model.

Other improvements on KSS. The theory of DPCP
for a UoH is ideally matched to the subspace estimation
step of KSS, where most of the points in the estimated
cluster are expected to belong to a single hyperplane
with the remaining points belonging to the other hyper-
planes. This suggests using DPCP instead of PCA in
KSS for its robustness in fitting a hyperplane. Although
GGD (Maunu et al., 2019) and REAPER (Lerman
et al., 2015) share similar objectives with DPCP, both
are primarily designed for low-dimensional subspace re-
covery. For example, REAPER requires d < (D− 1)/2
in theory, where d and D are the dimensions of the
subspace and ambient space, respectively. In other
related work, Median K-Flats (MKF) (Zhang et al.,
2009) replaces the squared `2 objective in KSS with an
unsquared one, but it lacks competitive performance as
observed by Gitlin et al. (2018). Alternatively, Gitlin
et al. (2018) substituted PCA in KSS by Coherence
Pursuit (CoP) (Rahmani and Atia, 2017a), but the
theory requires d <

√
D, thus making it unsuitable for

hyperplanes.

2 BACKGROUND

We first describe the data model used in this pa-
per. Consider the `2 column-normalized dataset X̃ =
[X ,O]Γ ∈ RD×(N+M), where X = [x1, · · · ,xN ] ∈
RD×N are N inlier points that lie in the union of K hy-
perplanes H1, · · · ,HK of RD with unit normal vectors
b1, · · · , bK , respectively, O = [o1, · · · ,oM ] ∈ RD×M
are M outliers that lie on the unit sphere SD−1 in RD,
and Γ is an unknown permutation. We assume that
for every k ∈ [K] := {1, · · · ,K}, there are Nk inlier
points, denoted by X k ⊂ X , that belong to Hk. Given
this model, our goal is to estimate the underlying hy-
perplanes {Hk} from X̃ , as well as cluster the data
points according to their nearest hyperplane.

Note that if b is a normal vector to a hyperplane, it is
orthogonal to all the data points within this hyperplane.
Thus, we attempt to find a normal vector to one specific
hyperplane by solving

min
b∈SD−1

f(b) := ‖X̃>b‖1 =

K∑
k=1

‖X>k b‖1 + ‖O>b‖1 (1)

which is called Dual Principal Component Pursuit
(DPCP). For learning a single hyperplane H, when
the inliers are uniformly distributed in H ∩ SD−1 and
the outliers are uniformly distributed in SD−1, the
DPCP problem (1) can provably recover the true nor-
mal vector to H provided that the number of outliers
is big-O of the square of the number of inliers (Ding
et al., 2019; Zhu et al., 2018a). The problem is more
challenging when X consists of inliers from a union of
K hyperplanes. The analysis of a single hyperplane
cannot be applied here by treating the data points from
one hyperplane as inliers and the rest as outliers since
the data distribution in other planes is far from uniform
and thus violates the prior analysis.

We now introduce several geometric quantities
from Zhu et al. (2018a) that characterize how well
the inliers and outliers are distributed. First, to
characterize the distribution of outliers, we use
the maximum norm Riemannian subgradient of the
function 1

M ‖O
>b‖1, which we denote by

ηO := max
b∈SD−1

‖(I− bb>)O sign(O>b)‖2/M, (2)

where sign(a) = a/|a| if a 6= 0 else 0, and sign(a)
denotes the application of the sign function element-
wise to the vector a. More uniformly distributed
outliers lead to smaller values of ηO. This follows
since if M → ∞ and O is well distributed, then
O sign(O>b)/M approaches the direction of b, which
leads to ηO → 0 (Zhu et al., 2018a). Second, for the
inlier subset X k in hyperplane Hk, we define

cXk,min := min
b∈Hk∩SD−1

‖X>k b‖1/Nk,

cXk,max := max
b∈Hk∩SD−1

‖X>k b‖1/Nk.
(3)

Note that cXk,min is exactly the permeance statistic
defined in Lerman et al. (2015). A well-distributed X k

leads to a large value of cXk,min and small value of
cXk,max since it is difficult to find a single direction b
that is orthogonal to (or in line with) many points in
X k. Parallel to (2) and (3), we also define the following
quantities that further characterize the distribution of
inliers and outliers, respectively:

ηXk
:= max

b∈Hk∩SD−1
‖(PHk

− bb>)X k sign(X>k b)‖2/Nk,

cO,min := min
b∈SD−1

‖O>b‖1/M,

cO,max := max
b∈SD−1

‖O>b‖1/M,
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where PHk
is the orthonormal projection onto Hk. We

will see shortly that the global optimality theory based
on these geometric quantities is easier to interpret and
facilitates a probabilistic analysis.

3 ANALYSIS OF DPCP FOR A
UNION OF HYPERPLANES

3.1 Geometrically Dominant Hyperplane

We first review the definitions of a dominant hyper-
plane in Lerman and Zhang (2014); Tsakiris and Vidal
(2017c). The hyperplane (say H1) with the most num-
ber of points is defined as the dominant hyperplane in
Tsakiris and Vidal (2017c), i.e.,

N1 > max
k≥2

Nk. (4)

It is proved in Tsakiris and Vidal (2017c) that a global
solution of (1) is a normal vector of H1 under certain
conditions, which implicitly make use of the distribu-
tion of the data, but are deterministic in nature and
difficult to interpret. On the other hand, the work of
Lerman and Zhang (2014) considers a random model
where inliers are sampled from (∪Kk=1Hk) ∩ SD−1 with
weights {αk}Kk=1 (αk is the weight of sampling inliers
in Hk) and outliers are sampled from SD−1 with weight
α0, and

∑K
k=0 αk = 1. Then H1 is defined as the most

significant hyperplane if

α1 >

K∑
k=2

αk. (5)

The number of sampled points, in expectation, is equiv-
alent to N1 >

∑
k≥2Nk. In contrast to (4) and (5), the

hyperplane that we target depends on the point weights
as well as the distribution and geometric relationships
among the planes. We call such a plane a geometrically
dominant hyperplane.

Geometrically dominant hyperplane. Recall our
goal is to minimize the objective in (1). Intuitively,
the outlier term ‖O>b‖1 should be nearly constant for
well distributed outliers, so that the minimizer of (1)
is determined by the relative importance of the inlier
terms ‖X>k b‖1.We also expect the relative orientation
of the underlying hyperplanes to play an important
role in determining the solution to (1). For example,
in the case that data are uniformly sampled and each
plane has the same point weights, the solution of (1)
has a bias towards the normals of the planes that are
close to each other. Noting that the geometric relation-
ships between Hk’s are determined by the principal
angles between the bk’s, we define θk` ∈ [0, π/2] to
be the principal angle between bk and b`. By analyz-
ing the first-order necessary condition for problem (1),
we define ζk that measures the relative dominance for
X k and considers the integrated information of point

weights, data distribution, and relative orientation of
the hyperplanes:

ζk :=
NkcXk,min√

1>Wmax
(k,k)1 +

∑
` 6=kN`ηX `

+MηO +D
, (6)

where Wmax ∈ RK×K whose (k, `)th entry is
NkcXk,maxN`cX `,max cos(θk`) and represents the joint
importance of X k and X ` weighted by cos(θk`), Wmax

(k,k)

is the principal submatrix obtained by deleting the
kth row and kth column of Wmax, and 1 is the
vector of all 1’s. Noting that: (i) the numerator
NkcXk,min of (6) represents the contribution from X k;
(ii) the term 1>Wmax

(k,k)1 in the denominator counts
the sum of the entries in Wmax

(k,k), capturing the total
contributions from {X `} 6̀=k; and (iii) the last term∑
` 6=kN`ηX `

+MηO +D is typically small2 compared
with the former two terms. Thus, overall ζk measures
the relative dominance of X k over {X `}` 6=k. We see
that larger relative dominance of X k (i.e. larger ζk)
results from better distributed data points, larger Nk
relative to M and N` for ` 6= k, and better separation
of the other hyperplanes (large θij , i, j 6= k, i 6= j).

Definition 1. With ζk in (6), we say that Hk is a
geometrically dominant hyperplane if ζk ≥ ζ`,∀`.

The notion of geometric dominance makes the deter-
ministic analysis (Sec. 3.2) tighter, and allows a proba-
bilistic analysis (Sec. 3.3) that is easier to be satisfied
with only mild number of sampled points

Proposition 1. There is at most one k ∈ [K] such
that ζk > 1, and then ζ` < 1 for all ` ∈ [K]\k.

It follows from Proposition 1 that if ζk > 1 then Hk is
the unique geometrically dominant hyperplane. For the
rest of the analysis, we assume that there always exists
k ∈ [K] such that ζk > 1; the scenario that such a geo-
metrically dominant hyperplane does not exist is left for
future work. We note that this assumption ensures a
simple landscape of the non-convex DPCP problem (1)
that allows us to show that under certain conditions
the global minimizers of (1) are guaranteed to be nor-
mal vectors of the geometrically dominant hyperplane
(Theorem 1). The assumption may be stronger than
needed in theory3 since it excludes the possibility that
normals of the other hyperplanes are global solutions
to (1), which are also of our interest. Related works
make similar assumptions—Tsakiris and Vidal (2017c)

2Assuming points in X k and O are uniformly sampled
from SD−1 ∩ Hk and SD−1, respectively, both NkcXk,max
and NkcXk,min scale as O(Nk), while NkηXk scales as
O(
√
Nk) and MηO scales as O(

√
M) (Zhu et al., 2018a).

3In fact, Tsakiris and Vidal (2017c, Proposition 5) shows
that for three equi-angular hyperplanes, global minimizers
of (1) can be normal vectors of any of the planes when they
are well-separated and the data points are well-distributed.
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Figure 1: (Left) Since b2, b3 /∈ C, they could be critical
points; (Right) Since b2 ∈ C it cannot be a critical point,
but b3 could be because b3 /∈ C.

requires (4) and Lerman and Zhang (2014) requires (5).
We will see that, when data is sampled from a specific
random spherical model (Theorem 2), the geometric
dominance not only implies both (4) and (5), but also
has the advantage that it characterizes the data distri-
bution. As mentioned above, this assumption is likely
to be satisfied in the subspace estimation step of KSS
where most of the points in the estimated cluster are
expected to be sampled from one dominant hyperplane,
which works well in practice as we will see in Section 4.

3.2 Deterministic Analysis of DPCP for a UoH

Without loss of generality, we assume ζ1 > 1, i.e., that
H1 is the geometrically dominant hyperplane. We first
characterize critical points of (1) with respect to the
geometrically dominant hyperplane H1.
Lemma 1. Any critical point b∗ of (1) must belong
to {±b1} or have a principal angle θ from b1 satisfying
θ ≥ arcsin(

√
1− (1/ζ1)2).

Intuitively, Lemma 1 suggests that any critical point
of (1) is either a normal vector of H1, or very close
to H1 (i.e., within a region defined by the geometric
dominance level of X 1). As the relative dominance of
X 1 increases (larger ζ1), the location of b∗ becomes
more restricted. In particular, Lemma 1 allows us to
conclude that b1 is the single (up to direction) critical
point inside of the cone C := {y ∈ RD : |y>b1| >
1/ζ1, ‖y‖2 = 1} centered around ±b1.

The above observation ensures that every normal in the
set {±b2, · · · ,±bK} that lies inside of C is not a critical
point (see Figure 1). We will later see how this facili-
tates the convergence of an algorithm to {±b1} when
it is initialized inside C because b1 (up to direction) is
the only possible solution within the region.

Lemma 1 helps us understand global solutions of (1).
To show that any global minimizer b∗ satisfies b∗ ∈
{±b1}, we need to ensure that every critical point close
to H1 is not a global solution. Inspired by the analysis
in Tsakiris and Vidal (2017c), we define

γk :=
NkcXk,min∑

6̀=kN`cX`,max sin(θk`)−
√∑K−1

i=2 λi
(
Wmin

(k,k)

)
+ ∆

,

where ∆ := M(cO,max − cO,min). (7)

Here, Wmin is the same as Wmax (see (6)) by replac-

ing cXk,maxcX `,max with cXk,mincX `,min, and λ1(A) ≥
· · · ≥ λn(A) are the eigenvalues of an n-by-n matrix A.
In fact, we can show every global solution of (1) is not
far from {±b1} in the sense that its principal angle θ
from b1 satisfies θ ≤ arcsin(1/γ1). Combining this fact
with Lemma 1 establishes our main theoretical result.

Theorem 1. Any global solution of (1) is a normal
to the geometrically dominant hyperplane H1 if

(1/ζ1)2 + (1/γ1)2 < 1. (8)

Additional interpretation of γk and ζk is useful. Note
that γk is similar to ζk, which characterizes the rel-
ative dominance of X k from a different perspective.
First, the ∆ term M(cO,max − cO,min) in the denom-
inator of (7) represents the impact of outliers: uni-
formly distributed outliers with M → ∞ cause the
difference cO,max − cO,min to vanish, making the term
small. Next, to better analyze the square root part
in (7), for simplicity we consider the equi-angular
case for {H`} 6̀=k such that θij ≡ θ′ for all i, j 6=
k, i 6= j, then one can obtain (see supplementary)∑K−1
i=2 λi(W

min
(k,k)) = (1 − cos(θ′))

∑
` 6=k,rN

2
` c

2
X `,min,

where r = arg max` 6=kN`cX `,min. For a global solu-
tion to be a normal of Hk, one may expect: (i) a large
relative disparity in significance between X k and X `

for all ` 6= k so that NkcXk,min

N`cX`,max
is large; (ii) Hk to be

relatively close to the other planes so that the energy
concentrated around Hk is relatively large, i.e., θk` is
relatively small; and (iii) the other planes {H`}` 6=k are
relatively separated so that the energy concentrated
around any of them is relatively small, i.e., θ′ is rela-
tively large. All these make γk large.

An interpretation of Theorem 1 follows from the above
discussion about ζk and γk: for a fixed number of inliers
{Nk} and outliersM , if data points are well-distributed
(large cXk,min, small cXk,max, small ηXk

, small ηO,
small cO,max− cO,min), H1 is closer to the other planes
(relatively small θ1`, ` 6= 1) than the other planes are
to each other (relatively large θij , i, j 6= 1, i 6= j), then
both ζ1 and γ1 tend to be large, (8) is more likely to be
satisfied, and any global minimizer is a normal vector
of H1. In contrast to the discrete result in Tsakiris and
Vidal (2017c), which is based on a continuous variant
of (1) without outliers and uses quantities such as the
spherical cap discrepancy or circumradii of polytopes
that are difficult to interpret, the global geometric
analysis here focuses on the discrete problem (1) and
leverages geometric quantities to explicitly characterize
the underlying distribution of both inliers and outliers.

When the dataset is further contaminated with noise,
one may expect that the error between the global mini-
mizer and the true normal vector to H1 is proportional
to the noise level, as analyzed for a single subspace
case in Ding et al. (2019). We leave it as future work.
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3.3 Probabilistic Analysis of DPCP for a UoH

Since the geometric quantities have corresponding con-
centrations in probability (Zhu et al., 2018a), the new
approach leads to the following probabilistic guarantee.

Theorem 2. Consider a random spherical model where
the M columns of O are drawn uniformly from the
sphere SD−1, and the Nk columns of X k are drawn
uniformly from SD−1 ∩Hk for k ∈ [K], where Hk is a
hyperplane in RD. Then the probability that any global
solution of (1) is a normal vector of H1 is at least
1− 2(K + 1)e−t

2/2, where t > 0 satisfies

C0

∑
k 6=1

Nk +
(
C1

√
D log(D) +

3t

2

)∑
k 6=1

√
Nk (9)

+
(
C2

√
D logD + t

)√
M < C0N1 −

(√
2 +

t

2
√

2

)√
N1,

C1 and C2 are universal constants that are independent
of K, {Nk}, M , D and t, and

C0 :=
(D − 3)!!

(D − 2)!!
·

{
2
π

if D is even,
1 if D is odd.

(10)

Note that C0 ∈
[√

2
π(D−1) ,

√
1

D−1
]
(Zhu et al., 2018b,

footnote 9) is a constant for fixed D. As the number
of inliers from the hyperplanes goes to infinity and
the other parameters are fixed, (9) roughly requires∑
k 6=1Nk < N1, which coincides with (5) of Lerman

and Zhang (2014) (in expectation). Also, as the number
of inliers goes to infinity, (9) implies that the DPCP ap-
proach can tolerateM = O((N1−

∑
k 6=1Nk)/D)2) out-

liers, which generalizes the result in Zhu et al. (2018a)
for a single subspace.

A similar probabilistic result is provided in Lerman
and Zhang (2014, Theorem 1.1) but for a different
generative model where the number of points sampled
in each hyperplane is not fixed in advance, as opposed
to M and {Nk} here, but is controlled by the sampling
weights {αk}Kk=0 (see Sec. 3.1). With this difference
in mind, we now compare Lerman and Zhang (2014,
Theorem 1.1) with (9). Towards that goal, dividing
both sides of (9) by the total number of data points
N+M , and viewing M

N+M as α0 and Nk

N+M as αk, gives

α1 >

K∑
k=2

αk +
3
√
D · t+ ρ(D)√
N +M

K∑
k=0

√
αk, (11)

where ρ(D) :=
√

2D logDmax(C1, C2). Our result
and Lerman and Zhang (2014, Theorem 1.1) require a
similar condition on αk to guarantee that any global so-
lution of (1) is a normal vector of H1 with certain prob-
ability. On one hand, (11) requires α1 to be larger than∑K
k=2 αk by a positive amount (which goes to 0 if the

total number of points goes to infinity), which is slightly

Algorithm 1 Riemannian Subgradient Method

1: Initialization: b̂0 ∈ SD−1, µ0, and β ∈ (0, 1).
2: for t = 0, 1, 2, · · · do
3: Update the step size: µt ← µ0β

t.
4: Compute a Riemannian subgradient:

G(b̂t)← (I− b̂tb̂
>
t )X̃ sign(X̃>b̂t).

5: Update the iterate as:

b̃t+1 ← b̂t − µtG(b̂t),

b̂t+1 ← b̃t+1/‖b̃t+1‖2.
6: end for

stronger than (5) in Lerman and Zhang (2014). On the
other hand, Lerman and Zhang (2014, Theorem 1.1)
only ensures a probability of 1−C3 exp(−N+M

C4
), where

C3 = O(DD(D−1)/2 +D8(D−1)) and C4 = O(D16) (as-
suming the other parameters such as K are fixed),
thus needing to sample Ω(D18 logD) points to make
the probability overwhelming (e.g., probability of
1−O(exp(−D)) if N +M = Ω(D19 logD)). For com-

parison, by taking t =
√

N+M
D3 , Theorem 2 now requires

α1 to be larger than
∑K
k=2 αk by a small amount of(

3
D + ρ(D)√

N+M

)∑√
αk and guarantees with probability

1 − 2(K + 1) exp(−N+M
2D3 ), which only requires a to-

tal sampling of Ω(D3) points to make the probability
overwhelming (e.g., probability of 1−O(exp(−D)) if
N + M = Ω(D4)), which is much smaller than the
Ω(D18 logD) needed in Lerman and Zhang (2014).

3.4 Analysis of Projected Riemannian
Subgradient Descent for a UoH

We have shown that the non-convex DPCP problem (1)
is effective in robustly recovering a specific hyperplane
for a UoH. The work of Tsakiris and Vidal (2017c)
proposed to solve (1) by either an LP-based algorithm
that involves a sequence of convex optimization prob-
lems thus is computationally expensive, or an IRLS
algorithm that requires doing an SVD in each iteration
and lacks a convergence guarantee. Here, we will utilize
the efficient Riemannian subgradient method (RSGM)
stated as Algorithm 1, and focus on its convergence to
the geometrically dominant hyperplane that solves (1).

Each iterate of the RSGM computes a Riemannian
subgradient (I− bb>)X̃ sign(X̃>b), which is computa-
tionally efficient compared with solving an LP. More-
over, RSGM has been proved to converge to a global
solution at a linear rate with appropriate initializa-
tion in the single subspace case (Li et al., 2019; Zhu
et al., 2019). Here, we extend this analysis to the UoH
model and prove a linear convergence rate. Towards
that goal, we measure the distance between any vec-
tor b ∈ SD−1 and our target solution set {±b1} by
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Figure 2: Linear convergence to H1 for different β in Algo-
rithm 1. Here D = 9, K = 3, N = 1200 (N3 = 0.8N2 =
0.82N1), and outlier ratio M

M+N
= 0.3.

dist(b, {±b1}) := min(‖b− b1‖2, ‖b + b1‖2). The next
result establishes the Riemannian regularity condition
(RRC) (Zhu et al., 2019) for (1), which we use to obtain
a linear convergence rate.
Lemma 2 (Riemannian regularity condition
(RRC)). For any ε ∈ (0,

√
2(1− 1/ζ1)) and

τ =
√
2
2 N1cX 1,min

((
1− ε2/2

)
− 1/ζ1

)
with ζ1 de-

fined in (6), the DPCP problem (1) satisfies the
following (τ, ε, b1)-RRC: for every b ∈ SD−1 satisfying
dist(b, {±b1}) ≤ ε, we have

〈sign(b>b1)b1 − b,−(I− bb>)X̃ sign(X̃>b)〉
≥ τ dist(b, {±b1}).

(12)

In words, (12) guarantees that when b is close to a tar-
get solution ±b1 (a normal vector of the geometrically
dominant hyperplane H1), the negative Riemannian
subgradient points towards the target solution. The
choice of ε and τ in Lemma 2 depends on the geometric
dominance level of X 1. A larger relative dominance of
X 1 (larger ζ1) leads to larger ε (i.e., a larger initializa-
tion region) and larger τ (i.e., the negative Riemannain
subgradient points closer to ±b1). Using the RRC, we
now apply Zhu et al. (2019, Theorem 1) to obtain a
convergence guarantee for RSGM.

Theorem 3. Let {b̂t} be the sequence generated by
Algorithm 1 for solving problem (1) with initialization
b̂0 satisfying θ̂0 = arccos(|b>1 b̂0|) < arccos(1/ζ1) and
step size µt = µ0β

t such that

0 < µ0 ≤
τε

2ξ2
and 1 > β ≥

√
1− 2

τµ0

ε
+
µ2
0ξ

2

ε2
, (13)

where ε =

√
2(1− cos(θ̂0)),

τ = (
√

2/2)N1cX1,min
(

cos(θ̂0)− 1/ζ1
)
, and

ξ =
√
1>Wmax1 +

K∑
k=1

NkηXk +MηO +D.
(14)

Then the principal angle θ̂t between b̂t and b1 decays
at a linear rate: sin(θ̂t) ≤ ε · βt for all t ≥ 0.

Theorem 3 ensures that a properly initialized Algo-
rithm 1 converges linearly to a normal vector of the
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Figure 3: Mean clustering accuracy evolution over 100
independent experiments. Here D = 9,K = 3, N1 = N2 =
N3 = 400, and outlier ratio M

M+N
= 0.3.

geometrically dominant hyperplane H1, i.e., ±b1, pro-
vided a certain diminishing step size is used. Note
that Theorem 1 implies that ±b1 are global solu-
tions to (1) when condition (8) is satisfied. The
initialization requirement coincides with Lemma 1,
which states that any critical point inside the cone
C = {y ∈ RD : |y>b1| > 1/ζ1, ‖y‖2 = 1} must be
normal vectors of H1 (see Figure 1). Note that β is
crucial to the convergence properties of Algorithm 1:
convergence may fail if β is too small, and convergence
may be slow when β is too large. This is illustrated
in Figure 2 for data sampled from the random model
of Theorem 2, the initial step size is µ0 = 0.01, and
a spectral initialization is used (the bottom eigenvec-
tors of X̃ X̃>, which were shown to be appropriate in
practice (Zhu et al., 2019)).

Computational complexity. Let T be the number
of iterations, and L := N + M be the total number
of points. The computational complexity of RSGM is
O(TLD), which is preferable over the SVD-based IRLS
solver whose complexity is O(TLD2), especially when
the ambient dimension D is large.

4 HYPERPLANE CLUSTERING
WITH DPCP

Recall that KSS alternates between assigning data
points to clusters and fitting a hyperplane to each clus-
ter. The previous discussion concentrated on the theory
and algorithms for solving the DPCP problem (1) for
a UoH, showing it recovers the geometrically dominant
hyperplane. Inspired by the fact that condition (9) in
Theorem 2 is likely to hold in the subspace estimation
step of KSS (since we expect most of the points in the
estimated cluster to belong to a single hyperplane), we
use a family of KSS variants for hyperplane clustering.
The better performance of the KSS approach over the
sequential use of RANSAC was observed in Tsakiris and
Vidal (2017c) where the DPCP problem was solved by
IRLS. Aside from the standard KSS, we also consider
the following two improved variants.
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Table 2: Mean hyperplane clustering accuracy for different methods over 50 independent experiments.

D = 4 D = 9
K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5

MKF 0.7937 0.6263 0.5548 0.4643 0.5840 0.3973 0.2949 0.2470
SCC 0.9445 0.9209 0.9093 0.8784 0.9126 0.5940 0.3138 0.2519
EnSC 0.7011 0.4912 0.3913 0.3254 0.6223 0.3996 0.3125 0.2540

SSC-ADMM 0.6801 0.4810 0.3795 0.3175 0.6683 0.4010 0.2999 0.2548
SSC-OMP 0.5707 0.4134 0.3291 0.2747 0.5267 0.3573 0.2732 0.2232
DPCP-KSS 0.9834 0.9463 0.8985 0.8103 0.9927 0.9807 0.8051 0.5004
CoP-KSS 0.9614 0.8747 0.8300 0.7630 0.9706 0.9358 0.8380 0.5110
PCA-KSS 0.9601 0.8623 0.8142 0.7461 0.9619 0.9243 0.8074 0.5130

DPCP-EKSS 0.9889 0.8807 0.9778 0.9489 0.9938 0.9517 0.4908 0.2920
CoP-EKSS 0.8278 0.8393 0.8772 0.7938 0.8271 0.7900 0.3706 0.2867
PCA-EKSS 0.8278 0.8274 0.8517 0.7542 0.8221 0.7539 0.3660 0.2868

DPCP-CoRe-KSS 0.9832 0.9715 0.9561 0.9599 0.9928 0.9857 0.9784 0.9628
CoP-CoRe-KSS 0.9612 0.8992 0.9065 0.8907 0.9706 0.9415 0.9258 0.9089
PCA-CoRe-KSS 0.9603 0.8981 0.8769 0.8586 0.9619 0.9370 0.9278 0.9083

Ensemble KSS (EKSS). The performance of KSS is
sensitive to its initialization because the problem is non-
convex. A practical approach is to repeat the process
for multiple random initializations and then pick the
best one, or combine the results together in a certain
way. The Ensemble KSS (EKSS) (Lipor et al., 2018)
constructs an affinity matrix whose (i, j)th entry is the
number of times the ith and jth points are clustered
together, and then applies spectral clustering to obtain
clustering results.

Cooperative Re-initialization (CoRe) KSS. The
Cooperative Re-initialization (CoRe) (Lane et al., 2019)
framework optimizes a group of clustering results (repli-
cas) by greedily swapping clusters between them to im-
prove the overall quality. Both EKSS and CoRe expect
the clustering in each replica to be partially correct,
and that the same pattern of errors will not be made by
all replicas. CoRe is capable of identifying bad clusters
in a replica and swapping them with better alternatives
by monitoring the change in the objective value, and
hence it is observed to be more efficient than EKSS.

Since the above vaiants of KSS use PCA to fit a hy-
perplane to a cluster, we denote them as PCA-KSS,
PCA-EKSS, and PCA-CoRe-KSS. To improve their per-
formance, we replace PCA by our DPCP approach with
RSGM (Algorithm 1) and denote these KSS variants by
DPCP-KSS, DPCP-EKSS, and DPCP-CoRe-KSS. We
also use the CoP (Rahmani and Atia, 2017a) to fit the
hyperplane for each cluster, resulting in the three KSS
variants CoP-KSS (Gitlin et al., 2018), CoP-EKSS (Li-
por et al., 2018), and CoP-CoRe-KSS.

Synthetic Experiments. The data are generated
based on the random model in Theorem 2. All results
are obtained on a 64-bit machine with 2.6GHz Intel
Core i7 CPU. We first test the effect of using PCA,
DPCP, and CoP in KSS. The DPCP approach is imple-
mented with RSGM (Algorithm 1), where the initial
step size µ0 is determined by using a backtracking line

search during the first iteration and the diminishing
factor β is fixed to be 0.9. Figure 3 shows the mean hy-
perplane clustering accuracy (over 100 independent ex-
periments) versus iterations, with all methods using the
same initialization. DPCP-KSS outperforms the others
on the configuration, with average running times for
DPCP-KSS, CoP-KSS, and PCA-KSS of 0.99s, 2.11s,
and 0.20s, respectively.

Next, we compare the performance of the methods
discussed above with other state-of-the-art subspace
clustering algorithms that include MKF (Zhang et al.,
2009), SCC (Chen and Lerman, 2009), SSC-ADMM (El-
hamifar and Vidal, 2013), EnSC (You et al., 2016a),
and SSC-OMP (You et al., 2016b). The test4 uses
D = 4, 9, K = 2, 3, 4, 5, N = 50KD (each plane has
the same number of points so that Nk = 50D), and
M

M+N = 0.3. Since the KSS-style methods (without
ensemble) are sensitive to initialization, we run them
10 times with random initializations until convergence
(tolerance of 0.001) or 100 iterations is reached, and
then select the best (i.e., the one with the lowest ob-
jective value). The CoRe methods operate directly on
these 10 replicas to return an improved clustering result
by aggregating the knowledge. For the EKSS-like meth-
ods, in each replica we run the KSS-style methods for
only 10 iterations but build the affinity matrix based
on 1000 such replicas, which is suggested in Lipor et al.
(2018). Table 2 reports the mean clustering accuracy
of the methods on 50 independent instances with the
highest two scores in each column given in bold.

One can see that the SC methods EnSC, SSC-ADMM,
and SSC-OMP, which are designed for the low-relative
dimension setting, are among the least competitive for
clustering hyperplanes. Also, MKF and SCC do not
perform well. Among the other methods, we observe
that within each scheme, algorithms that involve DPCP

4The ambient dimension D for the synthetic experiments
follows Tsakiris and Vidal (2017c).
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Table 3: Mean clustering error for KSS variants with differ-
ent backbones on 89 annotated images of NYUdepthV2.

KSS CoRe-KSS EKSS
DPCP 10.2% 9.3% 8.0%
PCA 12.4% 11.7% 10.8%
CoP 11.0% 10.8% 13.8%

(implemented by RSGM in Algorithm 1) almost always
perform the best. As a result, in each column the best
method is the one that uses DPCP as the internal solver
for identifying the dominant hyperplane in a cluster.
We made the conservative choice of fixing β = 0.9 in
RSGM, which empirically works well but additional
tuning for β would further improve performance. We
find that with as little as 10 replicas, the methods built
on the CoRe framework perform very well. We believe
this is because CoRe is able to correct bad cluster
estimates by swapping with other estimates.

Real Experiments. We further explore the perfor-
mance of DPCP in hyperplane clustering using the
real dataset NYUdepthV2 (Nathan Silberman and Fer-
gus, 2012), which contains indoor RGB images of size
480× 640× 3 together with depth information for each
pixel. We use 89 annotated images from Tsakiris and
Vidal (2017c), each of which can be transformed to
307,200 3D points and has dominant hyperplanes such
as floors, walls and so on. For computational reasons,
we perform superpixel representation where each im-
age is segmented to about 1000 superpixels and the
set of pixels corresponding to each superpixel is sub-
stituted by their median depth. Moreover, since the
planes associated with an indoor scene are affine in R3,
we use homogeneous coordinates by adding 1 at the
fourth coordinate and normalize it to unit length in R4.
Finally, since different superpixels represent different
numbers of underlying pixels, we assign a weight to
each superpixel according to its size.

We now compare the KSS variants with different back-
bones, namely PCA, CoP and DPCP, in clustering
hyperplanes on 89 annotated images of NYUdepthV2.
The parametric setting for each method is the same
as for the synthetic experiments. Note that here we
ignore the other general subspace clustering algorithms
discussed in the synthetic experiments since they have
been shown less competitive for the hyperplane clus-
tering task (see Table 2). We first show in Table 3
the averaged clustering error for the KSS variants ap-
plied to the real data. One can see that a similar
phenomenon appears as in the synthetic experiments,
namely that the algorithm achieving the lowest mean
clustering error is the one using DPCP as the internal
solver for estimating the dominant hyperplane within
each KSS framework. On the other hand, the KSS
method is generally not comparable with CoRe-KSS or

Raw image Annotation
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CoP-CoRe-KSS

DPCP-KSS

DPCP-EKSS
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Figure 4: Visualization of various approaches in clustering
four hyperplanes from a 3D point cloud of NYUdepthV2.

EKSS in this test. Finally, in Figure 4 we give visual
comparisons of various approaches on clustering four
hyperplanes from a 3D point cloud of NYUdepthV2.

5 CONCLUSIONS

We considered the Dual Principal Component Pursuit
(DPCP) for learning a union of hyperplanes (UoH). We
provided a new geometric characterization as well as an
interpretable probabilistic analysis on global minimizers
of DPCP, which suggests that the solution is a nor-
mal vector to the geometrically dominant hyperplane.
Moreover, we established the convergence guarantee for
a scalable projected Riemannian subgradient method
for solving DPCP for a UoH. By integrating DPCP
into KSS (DPCP-KSS), and utilizing an ensemble of
DPCP-KSS via EKSS or CoRe, we were able to achieve
state-of-the-art performance in hyperplane clustering.

One could try to extend the analytical framework to a
union of high dimensional subspaces, but the analysis
would be significantly more complex since the geometry
between the subspaces is no longer easily characterized
by the principal angle between normal vectors. This
topic will be the subject of future work.
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